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Abstract

Propensity scoring (PS) is an established tool to account for measured confounding in non-

randomized studies. These methods are sensitive to missing values, which are a common

problem in observational data. The combination of multiple imputation of missing values

and different propensity scoring techniques is addressed in this work. For a sample of

lymph node-positive vulvar cancer patients, we re-analyze associations between the appli-

cation of radiotherapy and disease-related and non-related survival. Inverse-probability-of-

treatment-weighting (IPTW) and PS stratification are applied after multiple imputation by

chained equation (MICE). Methodological issues are described in detail. Interpretation of

the results and methodological limitations are discussed.

Introduction

One of the pertinent challenges in estimating causal treatment effects from observational data
is to control for confounding bias. The lack of randomization can lead to systematic differences
between treated and untreated subjects. In this case, observeddifferences in outcome cannot
securely be attributed to treatment exposure. Propensity scoring (PS) is the established statisti-
cal approach to reduce bias resulting from imbalanced measured covariate distributions across
treatment groups [1–5]. The propensity score (PS) e(xi) for a subject i is the probability that the
subject receives the treatment Zi, given its individual vector of covariates xi, e(xi) = P(Ti = 1|xi).
Zi = 1 applies if subject i receives the treatment, otherwiseZi = 0. Various PS methods exist
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including PS matching[2], PS stratification[6] PS covariate adjustment[7] and inverse-proba-
bility-of-treatment-weighting (IPTW)[8]. All PS models are very sensitive to missing values,
which are regularly encountered in retrospective studies. Patients or alternatively covariates
with missing data have to be excluded from the analysis. Different approaches to solve the
problem of missing values in PS analyses have been studied[9–14]. The multiple-imputation-
by-chained-equations (MICE) has been demonstrated to be an appropriate method to deal
with missing values, if they are missing at random[13–16]. With this method, missing values
are replaced by repeatedly drawn values from conditional probability distributions.

The results of the primary analysis and of one propensity score approach using available
data of the AGO-CaRE 1 (ArbeitsgemeinschaftGynäkologische Onkologie—Chemo-and
Radiotherapy in Epithelial Vulvar Cancer) study were reported in a medical companion paper
[17]. We re-analyzed the data, containing lymph-node positive vulvar cancer patients, of
which a subgroup was treated with adjuvant radio(chemo)therapy. Associations with mortality
from vulvar cancer (disease-related death (DRD)) and death from other / unknown causes
(DOC)were analyzed as competing risks. In the present work, the methodologyof data analy-
sis using multiple imputation and propensity scoring to estimate causal effects from observa-
tional data is shown in detail and considerations about methodological issues are disclosed.
The specific focus of this work is the detailed description and discussion of the applied statisti-
cal methodology. The use of the applied techniques are opposed to other potential techniques.
Advantages and disadvantages are discussed.

Patients

In the AGO-CaRE 1 study, 1618 patients with advanced vulvar cancer (FIGO stage� IB
[UICC staging 2006]) treated between 1998 and 2008 were retrospectively collected[13]. In the
present analysis, a subgroup of 346 patients with lymph-node involvement, age�90 years and
documented follow-up status were included. Of these patients, 182 (52.6%) were treated with
adjuvant radiotherapy, whereas 164 (47.4%) did not receive adjuvant radiotherapy.

Ethical Approval and Informed Consent

The study protocol was approved by local ethics committees at each center [leading vote: Ham-
burg (reference number PV3658)] and registered with clinicaltrials.gov (NCT01304667).
Patients provided general written informed consent to access their medical records for scien-
tific analysis at first contact with the respective study center. All procedures performed in stud-
ies involving human participants were in accordance with the ethical standards of the
institutional and/or national research committee and with the 1964 Helsinki declaration and
its later amendments or comparable ethical standards.

Statistical Methods

Multiple imputation

The MICE approach is an established imputation method creating multiple complete data sets
in which the missing values are replaced by estimates from a specified regression model using
the observeddata[13;15;16]. The procedure assumes the missing data to be missing at random,
which means that the probability that a value is missing only depends on the measured data.

With these multiply-imputed data sets, estimation is possible without omitting covariates or
individuals with missing values. Let x1,. . .,xk be the k variables to be considered, with some or
all of them having missing values. In the first step, all missing values are replaced at random.
Then, the first variable with missing values, e.g. x1, is regressed on the variables x2,. . .,xk. From
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this estimation model on observedvalues of x1, a prediction of x1 is generated, from which the
missing values of x1 are replaced by simulated drawing. The next variable with missing values x2

is regressed on all other variables x1,x3,. . .,xk, including the imputed values. Again, missing values
of x2 are replaced by drawings from the posterior predictive distribution of x2. The procedure is
repeated for all variables with missing values. After completion of such one cycle, the procedure
is replicated for ten cycles to create one complete data set with stabilized imputations, Xcomplete. It
is recommended to generate m = 3–20 data sets Xð1Þcomplete; . . . ;XðmÞcomplete [10;13;18]. In this analysis,
m = 10 complete data sets were generated. Considered variables were those listed in Table 1,
except resectionmargin and lymph node metastasis diameter, as these variables contained too
many missing values (62% and 70%, respectively). The different types of variables (continuous,
dichotomous, categorical) were accounted for, and implausible values (negative count data, non-
existing categories) were avoided[10;13]. To account for possible imbalances of the covariates
amongst the treated and untreated patients, MI was conducted for both treatment groups sepa-
rately[10].

Estimating treatment effects on disease-related and unrelated death

The effect of adjuvant therapy on the competing causes of death was computed separately in
the 10 imputed data sets and then averaged over data sets using Rubin's combination rules[19].
The cause-specific hazards model was applied to consider the competition of the investigated
causes of death. Using this approach, the specific events are analysed separately, treating the
competing events as censored. Tests were performed two-sided with a 5% level of significance.

Propensity Scoring

Identifying confounders and estimation of the PS. Confounding exists if a baseline vari-
able correlates with the outcome and is furthermore imbalanced between the treatment groups
[20]. Identification of relevant variables to be included in the PS model is a key factor for con-
founding control. Simulations showed that variables that are related to the outcome should be
included in the model, even though they are not associated with the exposure [21]. The vari-
ance of the estimated exposure effect is decreased by this technique, without increasing bias
[21]. In contrast, variables that are imbalanced with respect to the exposure can only produce
bias, if they were related to the outcome. Including variables associated with the exposure but
not with the outcome would increase this variance without decreasing bias [21,22]. However,
the ultimate aim of propensity scoring is to balance covariates. Therefore, an iterative proce-
dure was described by Austin (2011) [8]. In his work, he proposed to start with an initially
specifiedpropensity score model and to evaluate the resulting balance. If important systematic
differences between exposure groups remain, the PS model should be modified.This procedure
can be repeated until the group differences have been “reduced to an acceptable level” [8]. In
the present investigation, we follow these two approaches. In an initial step, all potential con-
founders associated with either one of the competing endpoints were taken into account. Asso-
ciations with outcome were tested using univariate cause-specific hazards models stratified
across the 10 imputed data sets Xð1Þcomplete; . . . ;Xð10Þ

complete. After applying the PS and evaluating the
balance achievement, the selection of confounders was adjusted iteratively until acceptable bal-
ance for all covariates was achieved.

The PS as defined by Rosenbaum and Rubin[1] represents the conditional probability of
receiving the treatment of interest, given the variables observed at baseline. It was estimated
using multivariate logistic regression of the treatment status on the confounding baseline
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Table 1. Patient characteristics by treatment group and standardized differences.

without adjuvant treatment

(n = 164)

with adjuvant treatment

(n = 182)

Standardized differences observed

data

Categorical covariates: n (%)

Tumor stage

pT1b 30 (18.3) 32 (17.6) -0.02

pT2 107 (65.2) 118 (64.8) -0.01

pT3 23 (14.0) 30 (16.5) 0.07

pT4 4 (2.4) 1 (0.6) -0.16

unknown 0 1 (0.6) 0.11

Resection status

R0 20 (12.2) 35 (19.2) 0.19

R1 122 (74.4) 134 (73.6) -0.02

unknown 22 (13.4) 13 (7.1) -0.21

Grading

G1 8 (4.9) 10 (5.5) 0.03

G2 98 (59.8) 106 (59.0) -0.03

G3 55 (33.5) 62 (34.1) 0.01

unknown 3 (1.8) 4 (2.2) 0.03

Positive LN

1 84 (51.2) 59 (32.4) -0.39

2 32 (19.5) 47 (25.8) 0.15

3 18 (11.0) 27 (14.8) 0.12

>3 24 (14.6) 40 (22.0) 0.19

unknown 6 (3.7) 9 (5.0) 0.06

ECOG

0 32 (19.5) 56 (30.8) 0.26

1 24 (14.6) 43 (23.6) 0.23

2 21 (12.8) 27 (14.8) 0.06

3 13 (7.9) 6 (3.3) -0.20

4 1 (0.6) 0 (0.0) -0.11

unknown 73 (44.5) 50 (27.5) -0.36

Vulva surgery

Wide excision 19 (11.6) 9 (5.0) -0.24

Partial vulvectomy 42 (25.6) 50 (27.5) 0.04

Complete vulvectomy 101 (61.6) 120 (65.9) 0.09

2 (1.2) 3 (1.7) 0.04

Groin surgery

- After initial sentinel node

dissection

52 (31.7) 35 (19.2) -0.29

- Primary complete groin

dissection

103 (62.8) 136 (74.7) 0.26

- Unknown if primary or secondary 9 (5.5) 11 (6.04) 0.02

Groin dissection

- Unilateral 47 (28.7) 27 (14.8) 0.34

- Bilateral 117 (71.3) 155 (85.2) 0.34

Pelvic node dissection 16 (9.7) 23 (12.6) 0.09

Continuous covariates: median(range)

age years 67 (20–89) 71 (30–87) -0.24

tumor diameter mm 35 (2–240) 35 (2.8–200) -0.08

(Continued )
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covariates selected in the previous step. The resulting logit of the PS was then used to predict
the probability of being treated[5;14].

Application of the propensity score. The IPTW method[7;23–25]was applied in each of
the imputed data sets before averaging the results. The idea behind this method is to reweight
the single individuals in the data set by the inverse probability of receiving the treatment, calcu-
lated from the PS. Thus, a sample in which the treatment assignment is independent of the dis-
tribution of measured covariates has been created[8].

Stabilized weights wi for individuals i have been defined as

wi ¼
P
PSi

Zi þ
1 � P

1 � PSi
ð1 � ZiÞ

[23]. The variable Zi indicates the treatment status for each subject i. If subject i was treated,
then Zi equals 1, and 0 otherwise.PSi defines the individual propensity score for patient i and P
is the rate of patients receiving the treatment. A robust variance estimator was used.

For comparison, PS stratification was applied. The study sample was split up into five strata
according to quintiles of the PS. Stratified Cox regressions for comparing treated and untreated
groups were performed for each imputed data set and then averaged. A robust variance estima-
tor was used. Rosenbaum and Rubin stated that five strata according to quintiles of the PS can
remove 90 percent of the bias in the considered covariates[1]. If the PS was correctly specified,
the treated and untreated subjects within each stratum would have similar distributions of
baseline covariates and could be compared directly without bias[26].

Balance check. If all prognostically relevant covariates were balanced between the treat-
ment groups the result of a univariate group comparison could be interpreted as a causal effect.
The recommended way to examine if continuous variables are balanced is to compute stan-
dardized differences between treatment groups, defined as the difference between treated and
untreated means of each factor, divided by the pooled standard deviation[5]. A method for fac-
tor variables is also described in Crowson et al.[5]. In this work, balance was tested in the origi-
nally measured data and in the data sets after applying the individual propensity score
techniques. In the multiply imputed data, results of the balance checks were averaged across
data sets using Rubin’s rules[19]. Absolute values of standardized differences<0.1 indicated
sufficient balance[26].

Achieving balance across treatment groups is the goal of PS. Therefore, balance was checked
after PS application. Depending on the resulting balance, the set of confounding variables was
adapted and a new PS was calculated and applied.

Table 1. (Continued)

without adjuvant treatment

(n = 164)

with adjuvant treatment

(n = 182)

Standardized differences observed

data

depth of invasion mm 7 (1–70) 8 (1.1–110) -0.04

resection margin mm 4 (1–16) 4 (0.25–25) 0.27

LN metastasis diameter mm 15 (0.3–50) 23 (1–80) 0.44

number of dissected groin LNs 15 (1–62) 16 (1–38) -0.03

All percentages refer to columns; ECOG Eastern Cooperative Oncology Group, LN lymph-node(s) Absolute standardized differences�0.10 are printed in

bold type. Frequencies of missing values in continuous variables were as follows: Age 0 (0%), tumor diameter 56 (17%), depth of invasion 155 (45%),

resection margin 216 (62%), lymph-node metastasis diameter 242 (70%), number of dissected groin lymph-nodes 14 (4%)

doi:10.1371/journal.pone.0165705.t001
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Software

For MI, the Stata packages "ice" and "mim" were utilized[10;27;28].R.2.15 (The R Foundation
for Statistical computing, Vienna, Austria) and Stata (StataCorp. 2015. Stata Statistical Soft-
ware: Release 14. College Station, TX: StataCorp LP.) with the packages "pscore"[29] and
"pbalchk"[30] were applied for PS.

Results

Out of 346 included patients with lymph-node positive vulvar cancer and documented follow-
up, 182 (53%) received adjuvant radiation therapy. Median follow-up was 16.4 months (range
0.3–163.6 months). During follow-up, 78 disease-related deaths, 17 disease-unrelated deaths
and 40 deaths due to unknown reasons were observed.Median disease-free and overall survival
were 15.3 months and 42.7 months, respectively. The patient characteristics as well as their
association with treatment assignment are summarized in Table 1. Several differences between
the treated and untreated patients were observed.Treated patients had considerably better
Eastern CooperativeOncologyGroup (ECOG) performance status than untreated patients, but
at the same time treated patients were older and had more affected lymph-nodes with larger
lymph-node metastases. Additionally, distribution of the type of groin surgery and groin dis-
section differed amongst the groups.

Missing values

Of the 346 patients, only 24 (7%) were completely documented regarding the 15 considered
covariates (Table 1), whereas 79 (23%) had more than three missing values. Of the 15 consid-
ered variables, only four were fully documented. Lymph-nodes metastasis diameter (70% miss-
ing) and minimum resectionmargin (62.4% missing) could not be considered as covariates
due to their high missing rates.

Naïve group comparison

Naïve univariate comparisons of the treated and untreated patients showed no associations
between therapy and disease-related or unrelated mortality (hazard ratio (HR) 0.83, 95% confi-
dence interval (CI): 0.53–1.29; p = 0.403 and HR 0.70, 95% CI 0.42–1.18; p = 0.177, respec-
tively) (Table 2).

Selection of confounders for computing the PS

Associations with disease-related death were found for the variables tumor stage, ECOG, num-
ber of affected nodes, type of groin surgery and age in the original data set as well as in the
imputed data. Tumor stage, resection status, ECOG, number of affected nodes, type of groin
dissection (uni- / bilateral) and age were related to death from other / unknown causes in both,
the original and the imputed data (Table 2). These variables also show imbalances with regards
to the standardized differences (Table 3). With respect to the achieved balance the best results
were obtained by considering all these potential confounders except tumor stage to compute
the PS.

Inverse-probability-of-treatment-weighting (IPTW)

Weighting the data according to the inverse probability of treatment resulted in predominantly
balanced confounding variables (Table 3). Estimated hazard ratios after MI and IPTW for
DRD were HR 0.69; 95% CI: 0.43–1.12; p = 0.135 and for DOCHR 0.73; 95% CI: 0.42–1.27;
p = 0.269, respectively (Table 4).
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PS stratification

Based on the quintiles of the PS, the data set was stratified into four groups with 69 patients
and one group with 70 patients. Effect estimates pooled across strata and combined from the

Table 2. Univariate associations between baseline characteristics and competing causes of death.

Observed data Imputed data

HR (95%-CI) DRD p-value HR (95%-CI) DOC p-value HR (95%-CI) DRD p-value HR (95%-CI) DOC p-value

Therapy 0.83 (0.53–1.29) 0.403 0.70 (0.42–1.18) 0.177 0.83 (0.53–1.29) 0.403 0.70 (0.42–1.18) 0.177

Tumor stage

pT2 vs pT 1b 1.43 (0.77–2.65) 0.254 2.30 (1.02–5.18) 0.045 1.43 (0.77–2.65) 0.254 2.30 (1.02–5.18) 0.045

pT3 vs pT 1b 1.66 (0.79–3.51) 0.183 2.15 (0.81–5.72) 0.126 1.66 (0.79–3.51) 0.183 2.15 (0.81–5.72) 0.126

pT 4 vs pT 1b 8.84 1.94–40.2) 0.005 8.84 (1.94–40.2) 0.005

Unknown vs. pT 1b

Resection status

R1 vs R0 0.71 (0.38–1.32) 0.273 0.43 (0.22–0.83) 0.012 0.69 (0.38–1.27) 0.235 0.43 (0.22–0.82) 0.010

Unknown vs R0 0.86 (0.35–2.12) 0.750 1.01 (0.43–2.41) 0.979

Grading

G2 vs G1 1.27 0.45–3.55) 0.653 0.84 (0.29–2.43) 0.743 1.24 (0.44–3.48) 0.677 0.87 (0.30–2.51) 0.793

G3 vs G1 2.25 (0.80–6.38) 0.126 1.72 (0.59–4.99) 0.317 2.18 (0.77–6.18) 0.141 1.76 (0.61–5.09) 0.298

Unknown vs G1 2.75 (0.61–12.5) 0.190

Positive LN

2 vs 1 1.82 (0.94–3.53) 0.075 2.44 (1.22–4.90) 0.012 1.73 (0.90–3.35) 0.102 2.35 1.17–4.73) 0.017

3 vs 1 2.39 (1.18–4.82) 0.015 3.01 (1.43–6.35) 0.004 2.20 (1.09–4.45) 0.029 2.83 (1.35–5.95) 0.006

>3 vs 1 5.50 (2.99–10.1) <0.001 2.33 (1.01–5.38) 0.048 5.13 (2.80–9.38) <0.001 2.41 (1.03–5.64) 0.043

Unknown vs 1 1.84 (0.63–5.39) 0.266 1.25 (0.29–5.47) 0.766

ECOG

1 vs 0 2.95 (1.43–6.10) 0.004 1.44 (0.55–3.74) 0.457 1.91 (0.95–3.83) 0.068 1.52 (0.71–3.25) 0.281

2 vs 0 2.74 (1.32–5.72) 0.007 2.38 (1.03–5.52) 0.044 2.08 (1.04–4.15) 0.038 2.07 (0.94–4.57) 0.072

3 / 4 vs 0 2.03 (0.58–7.14) 0.268 2.42 (0.67–8.71) 0.177 1.91 (0.63–5.75) 0.252 2.97 (1.12–7.84) 0.028

Unknown vs 0 2.46 (1.27–4.74) 0.007 2.49 (1.22–5.08) <0.012

Vulva surgery

Wide excision

Partial vulvectomy 0.48 (0.21–1.08) 0.077 1.27 (0.28–5.84) 0.756 0.48 (0.21–1.08) 0.077 1.27 (0.28–5.84) 0.756

Complete vulvectomy 0.71 (0.35–1.45) 0.353 2.80 (0.68–11.5) 0.155 0.71 (0.35–1.45) 0.353 2.80 (0.68–11.5) 0.155

Exenteration 2.98 (0.80–11.1) 0.104 2.98 (0.80–11.1) 0.104

Groin surgery 1

Primary complete groin diss.

After sentinel node diss. 0.55 (0.31–0.96) 0.036 1.46 (0.84–2.53) 0.179 0.52 (0.29–0.92) 0.025 1.43 (0.83–2.48) 0.196

Unknown 0.60 (0.14–2.51) 0.486

Groin dissection

Bi- vs unilateral 1.20 (0.67–2.14) 0.537 0.48 (0.28–0.82) 0.007 1.20 (0.67–2.14) 0.537 0.48 (0.28–0.82) 0.007

Pelvic node dissection 1.00 (0.52–1.95) 0.997 0.68 (0.27–1.71) 0.415 1.00 (0.52–1.95) 0.997 0.68 (0.27–1.71) 0.415

Age (years) 1.02 (1.01–1.04) 0.012 1.06 (1.03–1.09) <0.001 1.02 (1.01–1.04) 0.012 1.06 (1.03–1.09) <0.001

Tumor diameter mm 1.00 (1.00–1.01) 0.087 1.00 1.00–1.01) 0.264 1.01 (1.00–1.01) 0.074 1.00 (1.00–1.01) 0.488

Depth of invasion mm 1.01 (1.00–1.03) 0.061 1.01 (1.00–1.03) 0.099 1.01 (1.00–1.02) 0.190 1.01 (0.99–1.03) 0.291

Number of diss. groin LNs 0.98 (0.96–1.00) 0.112 1.01 (0.98–1.04) 0.523 0.98 (0.95–1.01) 0.121 1.01 (0.98–1.04) 0.628

DRD disease-related death, DOC death from other / unknown cause, ECOG Eastern Cooperative Oncology Group, HR hazard ratio, IPTW inverse

probability of treatment weighting

doi:10.1371/journal.pone.0165705.t002
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Table 3. Standardized differences to identify imbalances between treatment groups before and after imputing and inverse-probability-of-treat-

ment-weighting.

Standardized differences

observed data

Standardized differences

multiply imputed data

Standardized differences

observed data IPTW

Standardized differences

multiply imputed data IPTW

Tumor stage

pT1b -0.02 -0.02 0.14 0.08

pT2 -0.01 -0.001 -0.02 0.04

pT3 0.07 0.07 -0.05 -0.07

pT4 -0.16 -0.16 -0.24 -0.20

unknown 0.11 0.08

Resection status

R0 0.19 0.17 -0.003 0.004

R1 -0.02 -0.17 0.01 0.004

unknown -0.21 -0.01

Grading

G1 0.03 0.03 0.02 -0.01

G2 -0.03 -0.04 -0.07 -0.05

G3 0.01 0.02 0.03 0.06

unknown 0.03 0.10

Positive LN

1 -0.39 -0.39 0.02 0.03

2 0.15 0.17 -0.01 -0.01

3 0.12 0.13 -0.002 -0.003

>3 0.19 0.19 -0.02 -0.01

unknown 0.06 0.01

ECOG

0 0.26 0.16 0.03 0.02

1 0.23 0.17 -0.05 -0.03

2 0.06 -0.05 -0.01 -0.01

3 / 4 -0.20 -0.43 -0.01 0.03

unknown -0.36 0.02

Vulva surgery

Wide excision -0.24 -0.24 0.18 -0.20

Partial vulvectomy 0.04 0.04 0.10 0.12

Complete vulvectomy 0.09 0.09 0.02 0.01

Exenteration 0.04 0.04 -0.004 0.001

Groin surgery

- After initial sentinel

node dissection

-0.29 -0.27 0.02 -0.01

- Primary complete

groin dissection

0.26 0.27 -0.01 -0.01

- Unknown if primary or

secondary

0.02 -0.01

Groin dissection

Bilateral vs. Unilateral 0.34 0.34 -0.01 -0.04

Pelvic node

dissection

0.09 0.09 -0.07 0.004

age years -0.24 -0.24 0.02 0.01

tumor diameter mm -0.09 -0.12 -0.20 -0.26

depth of invasion mm -0.04 -0.04 -0.16 -0.10

(Continued )
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multiply imputed data sets were HR: 0.66; 95% CI: 0.40–1.09; p = 0.103 for DRD and HR: 0.75;
95% CI: 0.41–1.36; p = 0.337 for DOC, respectively (Table 4).

Discussion

In this study, MI followed by PS was applied to estimate the causal effect of radiation therapy
in lymph-node positive vulvar cancer on competing causes of death using data from the AGO--
CaRE 1 study[17].

In detail, ten complete data sets were generated using MI by chained equation (MICE), strati-
fied by treatment allocation[10;15;16].Then, confounders to include in the PS calculationwere
identified by testing univariate associations between baseline covariates and outcomes, stratified
across the multiple complete data sets. Thirdly, the PS was computed for each subject. In a fourth
step, PS was applied using IPTWand PS stratification[6;8;19;26;31;32]. With IPTW, each patient
was weighted according to her PS value. Stratification entailed splitting each data set according to
quintiles of the PS and performing analyses stratified over groups. The achieved balance of base-
line covariates before and after MI and IPTWwas evaluated by standardized differences. The
cause-specifichazards model was used to evaluate associations between treatment allocation and
the competing causes of death. Results were estimated within each of the imputed data sets and
then averaged. This approach is comparable to the 'Within approach' from Mitra and Reiter
(2012), who applied PS matching after MI[33]. In contrast, other approaches to overcome the
problem of missing values in PS estimation have been studied[9;11;12]. For example, Qu and Lip-
kovich (2009) proposed an adaptation including indicators of missing data patterns in the PS
model. This technique may reduce bias when data are not missing at random[11].

The results from both applied PS methods after MI were very similar and also comparable
to those from the naïve group comparison without MI and PS. All approaches agree in showing
no associations, but slight tendencies towards improved disease-related survival in patients
receiving radiation therapy (Table 4).

The two other established PS methods, PS matching and PS covariate adjustment, were not
appropriate in this example. PS matching entails assigning matched sets of treated and
untreated patients, sharing a similar PS value. Various techniques are available to select one or
more untreated subjects to match each treated subject [2;8;26;31;32;34–38].However, all PS

Table 3. (Continued)

Standardized differences

observed data

Standardized differences

multiply imputed data

Standardized differences

observed data IPTW

Standardized differences

multiply imputed data IPTW

number of dissected

groin LNs

-0.03 -0.04 -0.20 -0.19

LN lymph-node(s), IPTW inverse probability of treatment weighting; Standardized differences for imbalanced variables (absolute standardized differences

�0.10) are printed in bold.

doi:10.1371/journal.pone.0165705.t003

Table 4. Results after propensity scoring using the potential confounders age, resection status, ECOG, number of affected nodes, type of vulva

surgery and groin dissection.

Observed data Imputed data

HR (95%-CI) DRD p-value HR (95%-CI) DOC p-value HR (95%-CI) DRD p-value HR (95%-CI) DOC p-value

Therapy IPTW 0.72(0.44–1.17) 0.190 0.83(0.48–1.45) 0.513 0.69 (0.43–1.12) 0.135 0.73 (0.42–1.27) 0.269

Therapy Stratification 0.93 (0.46–1.87) 0.845 1.17 (0.51–2.67) 0.708 0.66 (0.40–1.09) 0.103 0.75 (0.41–1.36) 0.337

DRD disease-related death, DOC death from other / unknown cause, HR hazard ratio, IPTW inverse probability of treatment weighting

doi:10.1371/journal.pone.0165705.t004
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matching approaches require the group of untreated patients to be large enough (two- to threefold
larger than the group of treated subjects) to provide acceptable matching partners[32]. In the
AGO-CaRE 1 data, the number of treated patients exceeded the number of controls. In such situa-
tions, matching would either result in heterogeneousmatched pairs or in a small number of
matched pairs, omitting a significant amount of treated or untreated subjects for which no appro-
priate matching partner could be found. Therefore, PS matching was not implemented in this
work. With PS covariate adjustment, the PS is included as adjusting covariate in a Cox propor-
tional hazards model, where the outcome is regressed on the treatment variable. There is currently
no consensus whether there is a benefit of this method, compared to performing a multivariate
regression model adjusted for the confounding variables[39]. Furthermore, differences in covari-
ate variances between treated and untreated patients can cause difficulties. In such cases, D'Agos-
tino (1998)[32] advises against this method, which was therefore not applied in the present work.

The general purpose of the PS method is to reduce imbalances in outcome-related variables.
Most imbalances that were present in originally observed and imputed data were cured after
IPTW. The tumor stage, the type of vulva surgery, tumor diameter and the number of dissected
groin lymph-nodes were still imbalanced in the multiply imputed data. However, these vari-
ables (except tumor stage) had no association with the outcome (Table 2) and therefore do not
bias the results.

The validity of the results is limited by the assumptions inherent to the methods used. MI
requires that the missing values are missing at random, which led to a similar distribution of
baseline variables (Table 3) and similar univariate associations between baseline variables and
outcome (Table 2) in the originally observedand the multiply imputed data. A general assump-
tion in all PS methods is the presumption of no unmeasured confounders. Confounders that
are not accounted for because they are not or imperfectlymeasured or not measurable can still
bear a bias. In the present example, psychological factors and quality-of-life aspects were not
considered and may therefore bear the risk of unmeasured confounding.

In conclusion, the points to consider in our PS application were:

1. Missing values can be a problem in propensity score analysis. Different methods like MI, as
applied here, or the use of an missing values pattern indicator[9;11;12] are available. In our
example, results from a complete case analysis did not differ much from PS after MI.

2. Different propensity score methods are established, like matching, stratification or IPTW,
each providing even more options to choose from. The IPTW method yields an averaged
treatment effect of all subjects, in contrast to most matching methods, which calculate the
averaged treatment effect of the treated patients. Further, if the groups have similar size, the
IPTW method performs well[9].

3. The set of confounders to include in the PS have to be chosen carefully. The main goal of all
PS methods is however to obtain balance in the variables considered to be “important” in
the analysis.

4. For computing the PS, a logistic regression model is the established method. However, there
are also other ways including boosting or CART models[40].
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