40 research outputs found

    Passthrough of Exchange Rates and Purchasing Power Parity

    Get PDF
    In this paper we develop and test two hypotheses about purchasing power parity (PPP) derived from the pricing behavior of profit- maximizing, exporting firms. The first is that changes in the price of traded goods relative to domestic substitutes, due to partial pass- through of exchange rates, will affect the PPP relation. The second is that PPP should hold on forward rather than spot exchange rates, due to hedging by firms. Using quarterly data for the United States, Canada, France, Germany, Japan and the United Kingdom, we find considerable support for the first but not the second hypothesis.

    Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    Get PDF
    Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption we performed a population based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals respectively from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2,446,724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of fifteen independent loci, with ten loci reaching genome-wide significance (p<5x10−8) for ‘age at first tooth’ and eleven loci for ‘number of teeth’. Together these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including a SNP in the protein-coding region of BMP4 (rs17563, P= 9.080x10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development

    Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances

    Get PDF
    Twin and family studies indicate that the timing of primary tooth eruption is highly heritable, with estimates typically exceeding 80%. To identify variants involved in primary tooth eruption we performed a population based genome-wide association study of ‘age at first tooth’ and ‘number of teeth’ using 5998 and 6609 individuals respectively from the Avon Longitudinal Study of Parents and Children (ALSPAC) and 5403 individuals from the 1966 Northern Finland Birth Cohort (NFBC1966). We tested 2,446,724 SNPs imputed in both studies. Analyses were controlled for the effect of gestational age, sex and age of measurement. Results from the two studies were combined using fixed effects inverse variance meta-analysis. We identified a total of fifteen independent loci, with ten loci reaching genome-wide significance (p<5x10−8) for ‘age at first tooth’ and eleven loci for ‘number of teeth’. Together these associations explain 6.06% of the variation in ‘age of first tooth’ and 4.76% of the variation in ‘number of teeth’. The identified loci included eight previously unidentified loci, some containing genes known to play a role in tooth and other developmental pathways, including a SNP in the protein-coding region of BMP4 (rs17563, P= 9.080x10−17). Three of these loci, containing the genes HMGA2, AJUBA and ADK, also showed evidence of association with craniofacial distances, particularly those indexing facial width. Our results suggest that the genome-wide association approach is a powerful strategy for detecting variants involved in tooth eruption, and potentially craniofacial growth and more generally organ development

    Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack

    No full text
    Over the past few decades, the use of portable and wearable electronics has grown steadily. These devices are becoming increasingly more powerful, however, the gains that have been made in the device performance has resulted in the need for significantly higher power to operate the electronics. This issue has been further complicated due to the stagnate growth of battery technology over the past decade. In order to increase the life of these electronics, researchers have begun investigating methods of generating energy from ambient sources such that the life of the electronics can be prolonged. Recent developments in the field have led to the design of a number of mechanisms that can be used to generate electrical energy, from a variety of sources including thermal, solar, strain, inertia, etc. Many of these energy sources are available for use with humans, but their use must be carefully considered such that parasitic effects that could disrupt the user\u27s gait or endurance are avoided. This study develops a novel energy harvesting backpack that can generate electrical energy from the differential forces between the wearer and the pack. The goal of this system is to make the energy harvesting device transparent to the wearer such that his or her endurance and dexterity is not compromised. This will be accomplished by replacing the strap buckle with a mechanically amplified piezoelectric stack actuator. Piezoelectric stack actuators have found little use in energy harvesting applications due to their high stiffness which makes straining the material difficult. This issue will be alleviated using a mechanically amplified stack which allows the relatively low forces generated by the pack to be transformed to high forces on the piezoelectric stack. This paper will develop a theoretical model of the piezoelectric buckle and perform experimental testing to validate the model accuracy and energy harvesting performance. © 2007

    Seabird Observations During Cetacean Surveys In Santa Monica Bay, California

    No full text
    Volume: 108Start Page: 63End Page: 6

    Automated two-way coupling of CFD fire simulations to thermomechanical FE analyses at the overall structural level

    No full text
    Coupled CFD fire simulations and thermomechanical FE analyses typically consist of fire simulations, heat transfer analyses and structural response analyses, mutually coupled by three coupling steps. There are two coupling approaches, one-way and two-way coupling, where two-way coupling includes the effects of the structural response on fire propagation. In the first part of this paper, one- and two-way coupling approaches including the coupling steps are proposed to include coupling at the structural level. Then a case study comprising an office space with a 12-plate thin-walled steel façade under fire conditions is introduced, as well as the related CFD and FE models. A newly developed automated coupling interface and subprograms are used to perform several one-way and two-way coupled analyses using a coarse and fine CFD mesh for the case study. Slight differences are found in the results of identical simulations due to random effects in the fire simulations. Nevertheless, it can be concluded that two-way coupling is feasible, and that significant differences in the façade failure progression illustrate its effectiveness. Future research includes additional developments of both the fire and structural models, as well as verification and parametric studies to further confirm the findings
    corecore