4 research outputs found
The Disk Population in a Distant Massive Protocluster
The unprecedented angular resolution and sensitivity of the Atacama Large Millimeter/submillimeter Array make it possible to unveil disk populations in distant (>2 kpc), embedded young cluster environments. We have conducted an observation toward the central region of the massive protocluster G286.21+0.16 at 1.3 mm. With a spatial resolution of 23 mas and a sensitivity of 15 mu Jy beam(-1), we detect a total of 38 protostellar disks. These disks have dust masses ranging from about 53 to 1825 M (circle plus), assuming a dust temperature of 20 K. This sample is not closely associated with previously identified dense cores, as would be expected for disks around Class 0 protostars. Thus, we expect our sample, being flux-limited, to be mainly composed of Class I/flat-spectrum source disks, since these are typically more massive than Class II disks. Furthermore, we find that the distributions of disk masses and radii are statistically indistinguishable from those of the Class I/flat-spectrum objects in the Orion molecular cloud, indicating that similar processes are operating in G286.21+0.16 to regulate disk formation and evolution. The cluster center appears to host a massive protostellar system composed of three sources within 1200 au, including a potential binary with 600 au projected separation. Relative to this center, there is no evidence for widespread mass segregation in the disk population. We do find a tentative trend of increasing disk radius versus distance from the cluster center, which may point to the influence of dynamical interactions being stronger in the central regions
NIR jets from a clustered region of massive star formation: Morphology and composition in the IRAS 18264-1152 region
Context. Massive stars play crucial roles in determining the physical and chemical evolution of galaxies. However, they form deeply embedded in their parental clouds, making it challenging to directly observe these stars and their immediate environments. It is known that accretion and ejection processes are intrinsically related, thus observing the massive protostellar outflows can provide crucial information about the processes governing massive star formation very close to the central engine. Aims. We aim to probe the IRAS 18264-1152 (also known as G19.88-0.53) high-mass star-forming complex in the near infrared (NIR) through its molecular hydrogen (H2) jets to analyse the morphology and composition of the line emitting regions and to compare with other outflow tracers. Methods. We observed the H2 NIR jets via K-band (1.9 2.5 μm) observations obtained with the integral field units VLT/SINFONI and VLT/KMOS. VLT/SINFONI provides the highest NIR angular resolution achieved so far for the central region of IRAS 18264-1152 (∼0.2). We compared the geometry of the NIR outflows with that of the associated molecular outflow, probed by CO (2-1) emission mapped with the Submillimeter Array. Results. We identify nine point sources in the SINFONI and KMOS fields of view. Four of these display a rising continuum in the K-band and are Brγ emitters, revealing that they are young, potentially jet-driving sources. The spectro-imaging analysis focusses on the H2 jets, for which we derived visual extinction, temperature, column density, area, and mass. The intensity, velocity, and excitation maps based on H2 emission strongly support the existence of a protostellar cluster in this region, with at least two (and up to four) different large-scale outflows, found through the NIR and radio observations. We compare our results with those found in the literature and find good agreement in the outflow morphology. This multi-wavelength comparison also allows us to derive a stellar density of ∼4000 stars pc-3. Conclusions. Our study reveals the presence of several outflows driven by young sources from a forming cluster of young, massive stars, demonstrating the utility of such NIR observations for characterising massive star-forming regions. Moreover, the derived stellar number density together with the geometry of the outflows suggest that stars can form in a relatively ordered manner in this cluster
The SOFIA Massive (SOMA) Star Formation Survey. IV. Isolated Protostars
We present similar to 10-40 mu m SOFIA-FORCAST images of 11 isolated protostars as part of the SOFIA Massive (SOMA) Star Formation Survey, with this morphological classification based on 37 mu m imaging. We develop an automated method to define source aperture size using the gradient of its background-subtracted enclosed flux and apply this to build spectral energy distributions (SEDs). We fit the SEDs with radiative transfer models, developed within the framework of turbulent core accretion (TCA) theory, to estimate key protostellar properties. Here, we release the sedcreator python package that carries out these methods. The SEDs are generally well fitted by the TCA models, from which we infer initial core masses M ( c ) ranging from 20-430 M (circle dot), clump mass surface densities sigma(cl) similar to 0.3-1.7 g cm(-2), and current protostellar masses m (*) similar to 3-50 M (circle dot). From a uniform analysis of the 40 sources in the full SOMA survey to date, we find that massive protostars form across a wide range of clump mass surface density environments, placing constraints on theories that predict a minimum threshold sigma(cl) for massive star formation. However, the upper end of the m (*)-sigma(cl) distribution follows trends predicted by models of internal protostellar feedback that find greater star formation efficiency in higher sigma(cl) conditions. We also investigate protostellar far-IR variability by comparison with IRAS data, finding no significant variation over an similar to 40 yr baseline
Negative and positive feedback from a supernova remnant with SHREC. a detailed study of the shocked gas in IC443
Supernova remnants (SNRs) contribute to regulate the star formation efficiency and evolution of galaxies. As they expand into the interstellar medium (ISM), they transfer vast amounts of energy and momentum that displace, compress, and heat the surrounding material. Despite the extensive work in galaxy evolution models, it remains to be observationally validated to what extent the molecular ISM is affected by the interaction with SNRs. We use the first results of the ESO-ARO Public Spectroscopic Survey SHREC to investigate the shock interaction between the SNR IC443 and the nearby molecular clump G. We use high-sensitivity SiO(2-1) and (HCO+)-C-13 (1-0) maps obtained by SHREC together with SiO(1-0) observations obtained with the 40-m telescope at the Yebes Observatory. We find that the bulk of the SiO emission is arising from the ongoing shock interaction between IC443 and clump G. The shocked gas shows a well-ordered kinematic structure, with velocities blue-shifted with respect to the central velocity of the SNR, similar to what observed towards other SNR-cloud interaction sites. The shock compression enhances the molecular gas density, n(H-2), up to >10(5) cm(-3), a factor of >10 higher than the ambient gas density and similar to values required to ignite star formation. Finally, we estimate that up to 50 per cent of the momentum injected by IC443 is transferred to the interacting molecular material. Therefore, the molecular ISM may represent an important momentum carrier in sites of SNR-cloud interactions