132 research outputs found

    Bulk nanostructuring intermetallic composite material

    Get PDF
    The article states the results of a study of the impact rendered by the plastic strain occurring in a high-temperature synthesis product during the thermal explosion of a nickel-aluminum powdermixture on the grain structure, strength and ductility of the Ni3Al synthesized intermetallic compound

    Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator

    Get PDF
    The paper analyzes the surface structure and properties of commercially pure VT1-0 titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. The analysis demonstrates that the friction coefficient of the nitrided material decreases more than four times and its wear resistance and microhardness increases more than eight and three times, respectively. The physical mechanisms responsible for the enhancement of strength and tribological properties of the material are discussed

    Modification of the sample's surface of hypereutectic silumin by pulsed electron beam

    Get PDF
    The article presents the results of the analysis of the elemental and phase composition, defect substructures. It demonstrates strength and tribological characteristics of the aluminium-silicon alloy of the hypereutectic composition in the cast state and after irradiation with a high-intensity pulsed electron beam of a submillisecond exposure duration (a Solo installation, Institute of High Current Electrons of the Siberian Branch of the Russian Academy of Sciences). The research has been conducted using optical and scanning electron microscopy, and the X-ray phase analysis. Mechanical properties have been characterized by microhardness, tribological properties - by wear resistance and the friction coefficient value. Irradiation of silumin with the high-intensity pulsed electron beam has led to the modification of the surface layer up to 1000 microns thick. The surface layer with the thickness of up to 100 microns is characterized by melting of all phases present in the alloy; subsequent highspeed crystallization leads to the formation of a submicro- and nanocrystalline structure in this layer. The hardness of the modified layer decreases with the increasing distance from the surface exposure. The hardness of the surface layer is more than twice the hardness of cast silumin. Durability of silumin treated with a high intensity electron beam is ≈ 1, 2 times as much as the wear resistance of the cast material

    The accumulation of femtosecond laser radiation energy in crystals of lithium fluoride

    Get PDF
    We present the results of studies of energy accumulation during the non-destructive interaction of extremely intense near infrared laser radiation with model wide band gap dielectric crystals of lithium fluoride, when the intensity of pulses is sufficient for effective highly nonlinear absorption of light and for the excitation of the electron subsystem of matter and the energy of pulses is still not sufficient for significant heating, evaporation, laser breakdown or other destruction to occur. We studied the emission of energy in the form of light sum of thermally stimulated luminescence accumulated under conditions of self-focusing and multiple filamentation of femtosecond laser radiation. It was established that it's the F2 and F[3]{+} color centers and supplementary to them centers of interstitial type which accumulate energy under the action of a single femtosecond laser pulses. When irradiated by series of pulses the F3, F[3]{-} and F[4] centers additionally appear. F2 centers are the main centers of emission in the process of thermally stimulated luminescence of accumulated energy. The interstitial fluoride ions (I-centers) are the kinetic particles. They split off from the X[3]{-} centers in the result of thermal decomposition of latter on the I-centers and molecules X[2]{0}. I-centers recombine with F[3]{+} centers and form F[2] centers in excited state. The latter produce the characteristic emission spectrum emitted in the form of thermally stimulated luminescence

    Surface hardening alloy VT6 of electric explosion and by electron beam

    Get PDF
    The aim is to study the phase composition, structure and properties of the surface layer of the VT6 titanium alloy, subjected to combined treatment, consisting of alloying by the plasma of an electric explosion of a graphite fiber with a charge of the SiC powder and subsequent exposure by a high-intense electron beam. As a result of such treatment, a multiphase surface layer with a submicron and nanosize structure forms with the microhardness manifold exceeding its value in the sample volume are presented

    Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications

    Get PDF
    ecent achievements in the area of tissue engineering (TE) have enabled the development of three-dimensional (3D) cell-laden hydrogels as in vitro platforms that closely mimic the 3D scenario found in native tissues. These platforms are extensively used to evaluate cellular behavior, cell-cell interactions, and tissue-like formation in highly defined settings. In this study, we propose a scalable and flexible 3D system based on microsized hydrogel fibers that might be used as building blocks for the establishment of 3D hydrogel constructs for vascularized bone TE applications. For this purpose, chitosan (CHT) coated κ-carrageenan (κ-CA) microfibers were developed using a two-step procedure involving ionotropic gelation (for the fiber formation) of κ-CA and its polyelectrolyte complexation with CHT (for the enhancement of fiber stability). The performance of the obtained fibers was assessed regarding their swelling and stability profiles, as well as their ability to carry and, subsequently, promote the outward release of microvascular-like endothelial cells (ECs), without compromising their viability and phenotype. Finally, the possibility of assembling and integrating these cell-laden fibers within a 3D hydrogel matrix containing osteoblast-like cells was evaluated. Overall, the obtained results demonstrate the suitability of the microsized κ-CA fibers to carry and deliver phenotypically apt microvascular-like ECs. Furthermore, it is shown that it is possible to assemble these cell-laden microsized fibers into 3D heterotypic hydrogels constructs. This in vitro 3D platform provides a versatile approach to investigate the interactions between multiple cell types in controlled settings, which may open up novel 3D in vitro culture techniques to better mimic the complexity of tissues.Authors thank the Portuguese Foundation for Science and Technology (FCT) for the personal grants SFRH/BD/42968/2008 through the MIT-Portugal Program (SMM) and SFRH/BD/64070/2009 (EGP). The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant agreement no REGPOT-CT2012-316331-POLARIS and MIT/ECE/0047/2009 project

    Study of the stochastic clustering on the refractory material surface under the effect of plasma load in the PLM device

    Get PDF
    Tungsten plates were tested in stationary helium discharges in the PLM device. The duration of discharges in the PLM reached 200 minutes. A distinctive feature of this device is the stationary plasma confinement, which is advantageous for testing fusion materials, including materials of the divertor and first wall of a fusion reactor. During plasma irradiation in the PLM, the thermal load on the surface of the tested plates was more than 1 MW/m(2). The temperature of the tested plates amounted to 1000 degrees C and more. Stochastic nanostructures with dimensions of the structural elements of less than 50 nm, including fuzz-type structures, were observed on the processed surfaces of the samples
    corecore