3,470 research outputs found

    Changes of some blood indices and myocardial electrolyte content during hypokinesia

    Get PDF
    Using special hypokinetic cages, the volume changes of circulating blood, its hematocrit and protein content, volume ratios between extra- and intracellular liquids in the body, as well as electrolyte content in the blood and myocardium during hypokinesia were investigated experimentally in rabbits

    Computations of Three-Body Continuum Spectra

    Get PDF
    We formulate a method to solve the coordinate space Faddeev equations for positive energies. The method employs hyperspherical coordinates and analytical expressions for the effective potentials at large distances. Realistic computations of the parameters of the resonances and the strength functions are carried out for the Borromean halo nucleus 6He (n+n+alpha) for J = 0+, 0-, 1+, 1-, 2+,2-. PACS numbers: 21.45.+v, 11.80.Jy, 31.15.Ja, 21.60.GxComment: 10 pages, 3 postscript figures, LaTeX, epsf.sty, corrected misprints in the caption of Fig.

    On calculating the Berry curvature of Bloch electrons using the KKR method

    Full text link
    We propose and implement a particularly effective method for calculating the Berry curvature arising from adiabatic evolution of Bloch states in wave vector k space. The method exploits a unique feature of the Korringa-Kohn-Rostoker (KKR) approach to solve the Schr\"odinger or Dirac equations. Namely, it is based on the observation that in the KKR method k enters the calculation via the structure constants which depend only on the geometry of the lattice but not the crystal potential. For both the Abelian and non-Abelian Berry curvature we derive an analytic formula whose evaluation does not require any numerical differentiation with respect to k. We present explicit calculations for Al, Cu, Au, and Pt bulk crystals.Comment: 13 pages, 5 figure

    Three-Body Halos in Two Dimensions

    Get PDF
    A method to study weakly bound three-body quantum systems in two dimensions is formulated in coordinate space for short-range potentials. Occurrences of spatially extended structures (halos) are investigated. Borromean systems are shown to exist in two dimensions for a certain class of potentials. An extensive numerical investigation shows that a weakly bound two-body state gives rise to two weakly bound three-body states, a reminiscence of the Efimov effect in three dimensions. The properties of these two states in the weak binding limit turn out to be universal. PACS number(s): 03.65.Ge, 21.45.+v, 31.15.Ja, 02.60NmComment: 9 pages, 2 postscript figures, LaTeX, epsf.st

    The structure of the atomic helium trimers: Halos and Efimov states

    Get PDF
    The Faddeev equations for the atomic helium-trimer systems are solved numerically with high accuracy both for the most sophisticated realistic potentials available and for simple phenomenological potentials. An efficient numerical procedure is described. The large-distance asymptotic behavior, crucial for weakly bound three-body systems, is described almost analytically for arbitrary potentials. The Efimov effect is especially considered. The geometric structures of the bound states are quantitatively investigated. The accuracy of the schematic models and previous computations is comparable, i.e. within 20% for the spatially extended states and within 40% for the smaller ^4He-trimer ground state.Comment: 32 pages containing 7 figures and 6 table

    Cosmic ray modulation in a random anisotropic magnetic field

    Get PDF
    Inhomogeneities of the interplanetary magnetic field can be divided into small scale and large scale ones as may be required by the character of the problem of cosmic ray (CR) propagation. CR propagation in stochastic magnetic fields is of diffusion character. The main contribution into the scattering of CR particles is made by their interaction with inhomogeneities of the magnetic field H which have characteristic dimensions 1 of the order of Larmor radius R=cp/eH of particle (p is the absolute value of particle momentum, e is particle charge, c is velocity of light). Scattering of particles on such inhomogeneities leads to their diffusion mostly along a magnetic field with characteristic dimensions of variation in space exceeding the mean free path

    How to observe the Efimov effect

    Full text link
    We propose to observe the Efimov effect experimentally by applying an external electric field on atomic three-body systems. We first derive the lowest order effective two-body interaction for two spin zero atoms in the field. Then we solve the three-body problem and search for the extreme spatially extended Efimov states. We use helium trimers as an illustrative numerical example and estimate the necessary field strength to be less than 2.7 V/angstrom.Comment: 4 pages, 2 postscript figures, psfig.sty, revte

    Spin dynamics in the Kapitza-Dirac effect

    Full text link
    Electron spin dynamics in Kapitza-Dirac scattering from a standing laser wave of high frequency and high intensity is studied. We develop a fully relativistic quantum theory of the electron motion based on the time-dependent Dirac equation. Distinct spin dynamics, with Rabi oscillations and complete spin-flip transitions, is demonstrated for Kapitza-Dirac scattering involving three photons in a parameter regime accessible to future high-power X-ray laser sources. The Rabi frequency and, thus, the diffraction pattern is shown to depend crucially on the spin degree of freedom

    Elastic Wavefield Modeling for Arbitrarily Oriented Orthotropic Media

    Get PDF
    Composite materials have gained a considerable importance, being widely applied e.g. in aerospace industries as unidirectional, layered or woven structures. Through their complex build-up these materials exhibit anisotropic elastic behavior, raising considerable difficulties for ultrasonic nondestructive testing techniques. In modeling the interaction of elastic waves with such media a simple tool of assisting analysis is available. In this respect, simulation and optimization allow for a reduction of experimental work and an increase in reliability of applied testing procedures. For materials exhibiting orthotropic elastic symmetry, fundamental plane wave characteristics are presented in this contribution. These relationships are further applied for transducer-field modeling using the Generalized Point Source Synthesis method [1]. Since for complex-shaped components the material’s natural symmetry planes are in general not identical with the component’s surfaces, a respective transformation has been applied recently to yield a compact elastic tensor representation for such configurations [2]. Based on this formulation, all analytical results are obtained in a coordinate-free form, where the material’s spatial orientation appears as an additional parameter. Since orthotropy includes the higher symmetries tetragonal, transversely isotropic, cubic and isotropic, the results presented cover most of the materials of today’s industrial interest. Numerical results cover slowness and group velocity diagrams as well as field pattern calculations for commercial transducers including time-depedent rf-impulse modeling

    Kalb-Ramond fields in the Petiau-Duffin-Kemmer formalism and scale invariance

    Full text link
    Kalb-Ramond equations for massive and massless particles are considered in the framework of the Petiau-Duffin-Kemmer formalism. We obtain 10Ă—1010\times10 matrices of the relativistic wave equation of the first-order and solutions in the form of density matrix. The canonical and Belinfante energy-momentum tensors are found. We investigate the scale invariance and obtain the conserved dilatation current. It was demonstrated that the conformal symmetry is broken even for massless fields.Comment: 9 pages, no figure
    • …
    corecore