365 research outputs found

    Relative importance of meridional and zonal sea surface temperature gradients for the onset of the ice ages and Pliocene-Pleistocene climate evolution

    Get PDF
    During the early Pliocene (roughly 4 Myr ago), the ocean warm water pool extended over most of the tropics. Subsequently, the warm pool gradually contracted toward the equator, while midlatitudes and subpolar regions cooled, establishing a meridional sea surface temperature (SST) gradient comparable to the modern about 2 Myr ago (as estimated on the eastern side of the Pacific). The zonal SST gradient along the equator, virtually nonexistent in the early Pliocene, reached modern values between 1 and 2 Myr ago. Here, we use an atmospheric general circulation model to investigate the relative roles of the changes in the meridional and zonal temperature gradients for the onset of glacial cycles and for Pliocene-Pleistocene climate evolution in general. We show that the increase in the meridional SST gradient reduces air temperature and increases snowfall over most of North America, both factors favorable to ice sheet inception. The impacts of changes in the zonal gradient, while also important over North America, are somewhat weaker than those caused by meridional temperature variations. The establishment of the modern meridional and zonal SST distributions leads to roughly 3.2 degrees C and 0.6 degrees C decreases in global mean temperature, respectively. Changes in the two gradients also have large regional consequences, including aridification of Africa (both gradients) and strengthening of the Indian monsoon (zonal gradient). Ultimately, this study suggests that the growth of Northern Hemisphere ice sheets is a result of the global cooling of Earth's climate since 4 Myr rather than its initial cause. Thus, reproducing the correct changes in the SST distribution is critical for a model to simulate the transition from the warm early Pliocene to a colder Pleistocene climate

    Comparing the impacts of Miocene–Pliocene changes in inter-ocean gateways on climate: Central American Seaway, Bering Strait, and Indonesia

    Get PDF
    Changes in inter-ocean gateways caused by tectonic processes have been long considered an important factor in climate evolution on geological timescales. Three major gateway changes that occurred during the Late Miocene and Pliocene epochs are the closing of the Central American Seaway (CAS) by the uplift of the Isthmus of Panama, the opening of the Bering Strait, and the closing of a deep channel between New Guinea and the Equator. This study compares the global climatic effects of these changes within the same climate model framework. We find that the closure of the CAS and the opening of the Bering Strait induce the strongest effects on the Atlantic meridional overturning circulation (AMOC). However, these effects potentially compensate, as the closure of the CAS and the opening of the Bering Strait cause similar AMOC changes of around 2 Sv (strengthening and weakening respectively). Previous simulations with an open CAS consistently simulated colder oceanic conditions in the Northern Hemisphere – contrasting with the evidence for warmer sea surface temperatures 10–3 million years ago. Here we argue that this cooling is overestimated because (a) the models typically simulated too strong an AMOC change not yet in equilibrium, (b) used a channel too deep and (c) lacked the compensating effect of the closed Bering Strait – a factor frequently ignored despite its potential influence on northern high latitudes and ice-sheet growth. Further, we discuss how these gateway changes affect various climatic variables from surface temperature and precipitation to ENSO characteristics

    Regional variations in the ocean response to tropical cyclones: Ocean mixing versus low cloud suppression

    Get PDF
    Tropical cyclones (TCs) tend to cool sea surface temperature (SST) via enhanced vertical mixing and evaporative fluxes. This cooling is substantially reduced in the subtropics, especially in the northeastern Pacific where the occurrence of TCs can warm the ocean surface. Here we investigate the cause of this anomalous warming by analyzing the local oceanic features and TC-induced anomalies of SST, surface fluxes, and cloud fraction using satellite and in situ data. We find that TCs tend to suppress low clouds at the margins of the tropical ocean warm pool, enhancing shortwave radiative surface fluxes within the first week following storm passage, which, combined with spatial variations in ocean thermal structure, can produce a ~1°C near-surface warming in the northeastern Pacific. These findings, supported by high-resolution Earth system model simulations, point to potential connections between TCs, ocean temperature, and low cloud distributions that can influence tropical surface heat budgets

    Pliocene warmth and gradients

    Get PDF
    The Pliocene epoch (5.3–2.6 Ma) generates continued debate as an example of a warm climate with external forcing similar to the present day. O'Brien et al. presented new multi-proxy sea surface temperature (SST) reconstructions from the South China Sea, adding to this debate. Based on their records, and a hypothesized seawater chemistry adjustment to temperature reconstructions previously derived from the Mg/Ca ratios of planktonic foraminifera, they suggest that the western Pacific warm pool was “2 °C warmer than today” in the Pliocene. This contradicts previous evidence of long-term stability in warm pool SSTs, but possibly reconciles temperature reconstructions and climate model simulations. Here we raise several points contrary to those conclusions

    Electronic Structure of Superconducting KC8 and Nonsuperconducting LiC6 Graphite Intercalation Compounds: Evidence for a Graphene-Sheet-Driven Superconducting State

    Get PDF
    We have performed photoemission studies of the electronic structure in LiC6_6 and KC8_8, a non-superconducting and a superconducting graphite intercalation compound, respectively. We have found that the charge transfer from the intercalant layers to graphene layers is larger in KC8_8 than in LiC6_6, opposite of what might be expected from their chemical composition. We have also measured the strength of the electron-phonon interaction on the graphene-derived Fermi surface to carbon derived phonons in both materials and found that it follows a universal trend where the coupling strength and superconductivity monotonically increase with the filling of graphene π\pi^{\ast} states. This correlation suggests that both graphene-derived electrons and graphene-derived phonons are crucial for superconductivity in graphite intercalation compounds

    Bayesian compositional regression with microbiome features via variational inference.

    Get PDF
    The microbiome plays a key role in the health of the human body. Interest often lies in finding features of the microbiome, alongside other covariates, which are associated with a phenotype of interest. One important property of microbiome data, which is often overlooked, is its compositionality as it can only provide information about the relative abundance of its constituting components. Typically, these proportions vary by several orders of magnitude in datasets of high dimensions. To address these challenges we develop a Bayesian hierarchical linear log-contrast model which is estimated by mean field Monte-Carlo co-ordinate ascent variational inference (CAVI-MC) and easily scales to high dimensional data. We use novel priors which account for the large differences in scale and constrained parameter space associated with the compositional covariates. A reversible jump Monte Carlo Markov chain guided by the data through univariate approximations of the variational posterior probability of inclusion, with proposal parameters informed by approximating variational densities via auxiliary parameters, is used to estimate intractable marginal expectations. We demonstrate that our proposed Bayesian method performs favourably against existing frequentist state of the art compositional data analysis methods. We then apply the CAVI-MC to the analysis of real data exploring the relationship of the gut microbiome to body mass index
    corecore