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The Pliocene epoch (5.3-2.6 million years ago) generates continued debate as an example of a warm 

climate with external forcing similar to the present-day1. A study by O’Brien et al2, presenting new multi-

proxy sea surface temperature (SST) reconstructions from the South China Sea, adds to the debate. Based 

on their records, and a hypothesized seawater chemistry adjustment to Mg/Ca temperature reconstructions, 

they suggest that the western Pacific warm pool was “2°C warmer than today” in the Pliocene, 

contradicting previous evidence of long-term stability in warm pool SSTs1,3. They submit that their 

estimate resolves discrepancies between temperature reconstructions and climate model simulations. Here 

we raise several points contrary to their conclusions surrounding warm pool temperature and the ability of 

climate models to simulate tropical conditions during the Pliocene. All the available mid-Pliocene SST data 

from the heart of the warm pool agree within the data uncertainty (Fig. 1) and suggest no significant 

warming. The unadjusted Mg/Ca temperature estimate3 at site ODP806 for the mid-Pliocene4 (-0.9°C, 

Figure 1) is close to estimates from faunal assemblage data4 (-0.4°C) and TEX86 approaches5 (-0.3°C), 

while alkenone-based Uk37 values are too close to saturation to provide a reliable SST estimate. In the 

heart of the cold tongue (site ODP847), both Mg/Ca and alkenone palaeothermometry agree6. The global 

seawater chemistry correction applied by O’Brien et al2 breaks this close correspondence at these respective 

locations.  Consequently, the large discrepancy between the Mg/Ca estimate and other SST estimates from 

the South China Sea (site ODP1143) may instead be a local feature. Furthermore, this marginal sea is not 

an ideal location to test the thermostat idea, nor to characterize the open ocean warm pool. A temperature 

increase of 2-3°C in the South China Sea could result from the warm pool’s meridional expansion during 

the Pliocene1, rather than a broad uniform warming. 

When dealing with signals as small as expected in the warm pool, defining our temporal reference frame 

also requires careful attention. This region has seen over 0.5°C of warming since 1950 (defined as 0 years 

“before present”) and more since preindustrial times7. The Pliocene Model Intercomparison Project 

(PlioMIP)  simulations8 are defined as a mid-Pliocene “interglacial” and are stated with respect to 

preindustrial simulations. An alternate approach for coarse-resolution data calculates differences from the 

most recent point of a long-term (~400kyr) mean1-3,6.When comparing to preindustrial-referenced 

simulations this approach can lead to a ~1°C offset (Fig. 1). Also, the PlioMIP simulations are driven by 

CO2 levels at the upper end of Pliocene estimates9,10, so one might anticipate them to model changes higher 

than the mean mid-Pliocene temperature reconstructions.  

From a dynamical perspective, the most interesting feature of Pliocene warm climates is the weakening of 

zonal (Fig. 1) and meridional temperature gradients in the Tropics11. The inability of climate models to 

simulate the extent and patterns of Pliocene warmth8,12 , specifically within the sub-tropics and equatorial 

upwelling regions, is a problem unresolved by a global seawater chemistry correction (Fig. 1), nor by a 

higher Earth System Sensitivity10 to CO2 forcing as suggested in an accompanying News & Views13. At its 

heart lies identifying mechanisms that can support weak temperature gradients1,11, which may be rooted in 

models’ relatively weak meridional SST gradient reduction due to unresolved climate feedbacks14-16. The 

Pliocene puzzle becomes even more concrete when looking further back into the Early Pliocene (4-5Ma) as 

SST proxies from around the globe indicate a further weakening of SST gradients1, whereas constraining 

warm pool SST changes remains difficult since they fall within the uncertainty of paleo proxies. 

 

PDF Crea
te! 

5 T
rial

www.nu
anc

e.c
om

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/29416168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:c.brierley@ucl.ac.uk


Figure Caption 

Figure: Reconstructed and modelled sea surface temperatures in the mid-Pliocene. The horizontal axis 

shows the Equatorial Pacific gradient and for the reconstructions is calculated as ODP806 minus ODP847, 

using the average of all available temperature estimates between 3.264-3.025 Ma4 – the reference interval 

for the model simulations8. The vertical axis shows the change in the warm pool temperature from 

preindustrial values (ODP806 or the maximum simulated value on the Equator). The red and black points 

show Mg/Ca-based reconstructions with and without the sea water chemistry adjustment of O’Brien et al2. 

The pink dot indicates the difference from an average of the past 400 kyrs, as published in O’Brien et al2. 

The blue circle shows an estimate based on faunal assemblages4. The change in the maximum east-west 

difference in annual mean SST is extracted from the PlioMIP model simulations8, because model biases 

can mean that the location of ODP806 is not in the simulated warm pool. The arrows show the direction of 

both a reduced seawater Mg/Ca ratio adjustment2 and the modelled response of increasing carbon dioxide8. 

[The COSMOS model is excluded, because its cold tongue bias is so extensive that the warm pool does not 

exist on along the Equator in the Pacific8.]  
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