19 research outputs found

    Selective Nonparametric Regression via Testing

    Full text link
    Prediction with the possibility of abstention (or selective prediction) is an important problem for error-critical machine learning applications. While well-studied in the classification setup, selective approaches to regression are much less developed. In this work, we consider the nonparametric heteroskedastic regression problem and develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point. Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor. We prove non-asymptotic bounds on the risk of the resulting estimator and show the existence of several different convergence regimes. Theoretical analysis is illustrated with a series of experiments on simulated and real-world data

    Nonparametric Uncertainty Quantification for Single Deterministic Neural Network

    Full text link
    This paper proposes a fast and scalable method for uncertainty quantification of machine learning models' predictions. First, we show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution. Importantly, the proposed approach allows to disentangle explicitly aleatoric and epistemic uncertainties. The resulting method works directly in the feature space. However, one can apply it to any neural network by considering an embedding of the data induced by the network. We demonstrate the strong performance of the method in uncertainty estimation tasks on text classification problems and a variety of real-world image datasets, such as MNIST, SVHN, CIFAR-100 and several versions of ImageNet.Comment: NeurIPS 2022 pape

    What is the cognitive footprint of insular glioma?

    Get PDF
    Cognitive impairment has a profound deleterious impact on long-term outcomes of glioma surgery. The human insula, a deep cortical structure covered by the operculum, plays a role in a wide range of cognitive functions including interceptive thoughts and salience processing. Both low-grade (LGG) and high-grade gliomas (HGG) involve the insula, representing up to 25% of LGG and 10% of HGG. Surgical series from the past 30 years support the role of primary cytoreductive surgery for insular glioma patients; however, reported cognitive outcomes are often limited to speech and language function. The breath of recent neuroscience literature demonstrates that the insula plays a broader role in cognition including interoceptive thoughts and salience processing. This article summarizes the vast functional role of the healthy human insula highlighting how this knowledge can be leveraged to improve the care of patients with insular gliomas

    Epilepsy and Neuromodulation—Randomized Controlled Trials

    No full text
    Neuromodulation is a treatment strategy that is increasingly being utilized in those suffering from drug-resistant epilepsy who are not appropriate for resective surgery. The number of double-blinded RCTs demonstrating the efficacy of neurostimulation in persons with epilepsy is increasing. Although reductions in seizure frequency is common in these trials, obtaining seizure freedom is rare. Invasive neuromodulation procedures (DBS, VNS, and RNS) have been approved as therapeutic measures. However, further investigations are necessary to delineate effective targeting, minimize side effects that are related to chronic implantation and to improve the cost effectiveness of these devices. The RCTs of non-invasive modes of neuromodulation whilst showing much promise (tDCS, eTNS, rTMS), require larger powered studies as well as studies that focus at better targeting techniques. We provide a review of double-blinded randomized clinical trials that have been conducted for neuromodulation in epilepsy

    Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases.

    No full text
    OBJECTIVE Contemporary theories of the pathophysiology of movement disorders emphasize abnormal oscillatory activity in basal ganglia-thalamocortical loops, but these have been studied in humans mainly using depth recordings. Recording from the surface of the cortex using electrocorticography (ECoG) provides a much higher amplitude signal than depth recordings, is less susceptible to deep brain stimulation (DBS) artifacts, and yields a surrogate measure of population spiking via "broadband gamma" (50-200 Hz) activity. Therefore, a technical approach to movement disorders surgery was developed that employs intraoperative ECoG as a research tool. METHODS One hundred eighty-eight patients undergoing DBS for the treatment of movement disorders were studied under an institutional review board-approved protocol. Through the standard bur hole exposure that is clinically indicated for DBS lead insertion, a strip electrode (6 or 28 contacts) was inserted to cover the primary motor or prefrontal cortical areas. Localization was confirmed by the reversal of the somatosensory evoked potential and intraoperative CT or 2D fluoroscopy. The ECoG potentials were recorded at rest and during a variety of tasks and analyzed offline in the frequency domain, focusing on activity between 3 and 200 Hz. Strips were removed prior to closure. Postoperative MRI was inspected for edema, signal change, or hematoma that could be related to the placement of the ECoG strip. RESULTS One hundred ninety-eight (99%) strips were successfully placed. Two ECoG placements were aborted due to resistance during the attempted passage of the electrode. Perioperative surgical complications occurred in 8 patients, including 5 hardware infections, 1 delayed chronic subdural hematoma requiring evacuation, 1 intraparenchymal hematoma, and 1 venous infarction distant from the site of the recording. None of these appeared to be directly related to the use of ECoG. CONCLUSIONS Intraoperative ECoG has long been used in neurosurgery for functional mapping and localization of seizure foci. As applied during DBS surgery, it has become an important research tool for understanding the brain networks in movement disorders and the mechanisms of therapeutic stimulation. In experienced hands, the technique appears to add minimal risk to surgery

    Intracarotid amobarbital disrupts synchronous and nested oscillatory activity ipsilateral to injection

    Get PDF
    The mechanism of amobarbital action during the intracarotid amobarbital procedure is poorly understood. We report a patient case who underwent IAP while implanted with bilateral stereo-EEG. We analyzed the spectral power, phase amplitude coupling, and cluster-phase group synchrony during the procedure. Delta and gamma power increased bilaterally. By contrast, phase amplitude coupling increased only ipsilateral to the injection. Similarly, 4–30 Hz cluster-phase group synchrony declines and gamma cluster-phase group synchrony increases only ipsilateral to the injection. These results suggest that a possible additional mechanism for amobarbital action in the IAP is by altering the precise timing of oscillatory activity. Keywords: Intracarotid amobarbital procedure, Wada, Stereo-EEG, Synchrony, Phase amplitude coupling, Epilepsy surger

    Long-term outcomes after responsive neurostimulation for treatment of refractory epilepsy: a single-center experience of 100 cases

    No full text
    OBJECTIVE: Despite antiepileptic drugs, more than 30% of people with epilepsy continue to have seizures. Patients with such drug-resistant epilepsy (DRE) may undergo invasive treatment such as resection, laser ablation of the epileptogenic focus, or vagus nerve stimulation, but many are not candidates for epilepsy surgery or fail to respond to such interventions. Responsive neurostimulation (RNS) provides a neuromodulatory option. In this study, the authors present a single-center experience with the use of RNS over the last 5 years to provide long-term control of seizures in patients with DRE with at least 1 year of follow-up. METHODS: The authors performed a retrospective analysis of a prospectively collected single-center database of consecutive DRE patients who underwent RNS system implantation from September 2015 to December 2020. Patients were followed-up postoperatively to evaluate seizure freedom and complications. RESULTS: One hundred patients underwent RNS placement. Seven patients developed infections: 2 responded to intravenous antibiotic therapy, 3 required partial removal and salvaging of the system, and 2 required complete removal of the RNS device. No postoperative tract hemorrhages, strokes, device migrations, or malfunctions were documented in this cohort. The average follow-up period was 26.3 months (range 1-5.2 years). In terms of seizure reduction, 8 patients had 0%-24% improvement, 14 had 25%-49% improvement, 29 experienced 50%-74% improvement, 30 had 75%-99% improvement, and 19 achieved seizure freedom. RNS showed significantly better outcomes over time: patients with more than 3 years of RNS therapy had 1.8 higher odds of achieving 75% or more seizure reduction (95% CI 1.07-3.09, p = 0.02). Also, patients who had undergone resective or ablative surgery prior to RNS implantation had 8.25 higher odds of experiencing 50% or more seizure reduction (95% CI 1.05-65.1, p = 0.04). CONCLUSIONS: Responsive neurostimulator implantation achieved 50% or more seizure reduction in approximately 80% of patients. Even in patients who did not achieve seizure freedom, significant improvement in seizure duration, severity, or postictal state was reported in more than 68% of cases. Infection (7%) was the most common complication. Patients with prior resective or ablative procedures and those who had been treated with RNS for more than 3 years achieved better outcomes

    Responsive Neurostimulation of the Thalamus for the Treatment of Refractory Epilepsy

    No full text
    INTRODUCTION: One-third of patients with epilepsy continue to have seizures despite antiepileptic medications. Some of these refractory patients may not be candidates for surgical resection primarily because the seizure onset zones (SOZs) involve both hemispheres or are located in eloquent areas. The NeuroPace Responsive Neurostimulation System (RNS) is a closed-loop device that uses programmable detection and stimulation to tailor therapy to a patient\u27s individual neurophysiology. Here, we present our single-center experience with the use of RNS in thalamic nuclei to provide long-term seizure control in patients with refractory epilepsy. METHODS: We performed a prospective single-center study of consecutive refractory epilepsy patients who underwent RNS system implantation in the anterior (ANT) and centromedian (CM) thalamic nuclei from September 2015 to December 2020. Patients were followed postoperatively to evaluate seizure freedom and complications. RESULTS: Twenty-three patients underwent placement of 36 RNS thalamic leads (CM = 27 leads, ANT = 9 leads). Mean age at implant was 18.8 ± 11.2 years (range 7.8-62 years-old). Two patients (8.7%) developed infections: 1 improved with antibiotic treatments alone, and 1 required removal with eventual replacement of the system to recover the therapeutic benefit. Mean time from RNS implantation to last follow-up was 22.3 months. Based on overall reduction of seizure frequency, 2 patients (8.7%) had no- to \u3c25% improvement, 6 patients (26.1%) had 25-49% improvement, 14 patients (60.9%) had 50-99% improvement, and 1 patient (4.3%) became seizure-free. All patients reported significant improvement in seizure duration and severity, and 17 patients (74%) reported improved post-ictal state. There was a trend for subjects with SOZs located in the temporal lobe to achieve better outcomes after thalamic RNS compared to those with extratemporal SOZs. Of note, seizure etiology was syndromic in 12 cases (52.2%), and 7 patients (30.4%) had undergone resection/disconnection surgery prior to thalamic RNS therapy. CONCLUSION: Thalamic RNS achieved ≥50% seizure control in ~65% of patients. Infections were the most common complication. This therapeutic modality may be particularly useful for patients affected by aggressive epilepsy syndromes since a young age, those whose seizure foci are located in the mesial temporal lobe, and those who have failed prior surgical interventions
    corecore