9 research outputs found

    Effects of Fibroblast Transplantation on the Content of Macrophages and the Morphology of Regenerating Ischemic Cutaneous Wounds

    No full text
    Background: The study of the morphological structure and the determination of macrophagal fraction (MF) in the newly formed epidermis and dermis on the 19th day after the transplantation of auto- and heterofibroblasts and a dermal equivalent with heterofibroblasts will allow determining the optimal method for ischemic wound healing. Materials and Methods: The study was performed on 28 white mature mice of the C57/B1 line aged between 5 and 7 months. In an ischemic cutaneous wound, 0.4 ml of fibroblast suspension (1.33 million cells) and a dermal equivalent were transplanted. The biopsy material was embedded in paraffin and stained with H&E by the Weigert-Van Gieson method to visualize the elastic and collagen fibers. Macrophages were determined by monoclonal antibodies to CD68. On the 19th day of the healing of ischemic cutaneous wound, the wound healing process goes through the transition from the stage of proliferation with the granulation tissue formation into the stage of differentiation or fibrosis. The most positive for regenerative histogenesis and inflammation is the introduction of autofibroblasts. The most differentiated epidermis is formed after transplantation into the wound of the dermal equivalent with heterofibroblasts due to the presence of hairpieces in the form of formed hair follicles. The favorable effect of the dermal equivalent with heterofibroblasts differs from the influence of the autofibroblast suspension only by several percent: the thickness of the epidermis by 4.29%, the area of collagen fibers by 2.66%, and the area of the blood vessels by 4.04%. The most positive treatment for regenerative histogenesis and inflammation is the introduction of autofibroblasts. The most differentiated epidermis is formed after transplantation into the wound of the dermal equivalent with heterofibroblasts, due to the presence of pieces hair in the form of formed hair follicles. Conclusion: The favorable effect of the dermal equivalent with heterofibroblasts differs from the influence of the autofibroblast suspension by only several percent: the thickness of the epidermis by 4.29%, the area of collagen fibers by 2.66%, and the area of the blood vessels by 4.04%

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Tevatron Combination of Single-Top-Quark Cross Sections and Determination of the Magnitude of the Cabibbo-Kobayashi-Maskawa Matrix Element Vtb\bf V_{tb}

    No full text
    We present the final combination of CDF and D0 measurements of cross sections for single-top-quark production in proton-antiproton collisions at a center-of-mass energy of 1.96 TeV. The data correspond to total integrated luminosities of up to 9.7 fb1^{−1} per experiment. The t-channel cross section is measured to be σt_t=2.250.31+0.29_{-0.31}^{+0.29} pb. We also present the combinations of the two-dimensional measurements of the s- vs t-channel cross section. In addition, we give the combination of the s+t channel cross section measurement resulting in σs+t_{s+t}=3.300.40+0.52_{-0.40}^{+0.52} pb, without assuming the standard model value for the ratio σs_st_t. The resulting value of the magnitude of the top-to-bottom quark coupling is |Vtb_{tb}|=1.020.05+0.06_{-0.05}^{+0.06}, corresponding to |Vtb_{tb}|>0.92 at the 95% C.L

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text
    International audienceThe CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of s=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is AFBtt¯=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions

    Tevatron Run II combination of the effective leptonic electroweak mixing angle

    No full text
    International audienceDrell-Yan lepton pairs produced in the process pp¯→ℓ+ℓ-+X through an intermediate γ*/Z boson have an asymmetry in their angular distribution related to the spontaneous symmetry breaking of the electroweak force and the associated mixing of its neutral gauge bosons. The CDF and D0 experiments have measured the effective-leptonic electroweak mixing parameter sin2θefflept using electron and muon pairs selected from the full Tevatron proton-antiproton data sets collected in 2001-2011, corresponding to 9–10  fb-1 of integrated luminosity. The combination of these measurements yields the most precise result from hadron colliders, sin2θefflept=0.23148±0.00033. This result is consistent with, and approaches in precision, the best measurements from electron-positron colliders. The standard model inference of the on-shell electroweak mixing parameter sin2θW, or equivalently the W-boson mass MW, using the zfitter software package yields sin2θW=0.22324±0.00033 or equivalently, MW=80.367±0.017  GeV/c2

    Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

    No full text

    Measurements of the Total and Differential Higgs Boson Production Cross Sections Combining the H??????? and H???ZZ*???4??? Decay Channels at s\sqrt{s}=8??????TeV with the ATLAS Detector

    No full text
    Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3~fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3  fb-1 of pp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8  TeV and recorded by the ATLAS detector. Cross sections are obtained from measured H→γγ and H→ZZ*→4ℓ event yields, which are combined accounting for detector efficiencies, fiducial acceptances, and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σpp→H=33.0±5.3 (stat)±1.6 (syst)  pb. The measurements are compared to state-of-the-art predictions.Measurements of the total and differential cross sections of Higgs boson production are performed using 20.3 fb1^{-1} of pppp collisions produced by the Large Hadron Collider at a center-of-mass energy of s=8\sqrt{s} = 8 TeV and recorded by the ATLAS detector. Cross sections are obtained from measured HγγH \rightarrow \gamma \gamma and HZZ4H \rightarrow ZZ ^{*}\rightarrow 4\ell event yields, which are combined accounting for detector efficiencies, fiducial acceptances and branching fractions. Differential cross sections are reported as a function of Higgs boson transverse momentum, Higgs boson rapidity, number of jets in the event, and transverse momentum of the leading jet. The total production cross section is determined to be σppH=33.0±5.3(stat)±1.6(sys)pb\sigma_{pp \to H} = 33.0 \pm 5.3 \, ({\rm stat}) \pm 1.6 \, ({\rm sys}) \mathrm{pb}. The measurements are compared to state-of-the-art predictions
    corecore