286 research outputs found

    Tunneling dynamics of side chains and defects in proteins, polymer glasses, and OH-doped network glasses

    Full text link
    Simulations on a Lennard-Jones computer glass are performed to study effects arising from defects in glasses at low temperatures. The numerical analysis reveals that already a low concentration of defects may dramatically change the low temperature properties by giving rise to extrinsic double-well potentials (DWP's). The main characteristics of these extrinsic DWP's are (i) high barrier heights, (ii) high probability that a defect is indeed connected with an extrinsic DWP, (iii) highly localized dynamics around this defect, and (iv) smaller deformation potential coupling to phonons. Designing an extension of the Standard Tunneling Model (STM) which parametrizes this picture and comparing with ultrasound experiments on the wet network glass aa-B2_2O3_3 shows that effects of OH-impurities are accurately accounted for. This model is then applied to organic polymer glasses and proteins. It is suggested that side groups may act similarly like doped impurities inasmuch as extrinsic DWP's are induced, which possess a distribution of barriers peaked around a high barrier height. This compares with the structurlessly distributed barrier heights of the intrinsic DWP's, which are associated with the backbone dynamics. It is shown that this picture is consistent with elastic measurements on polymers, and can explain anomalous nonlogarithmic line broadening recently observed in hole burning experiments in PMMA.Comment: 34 pages, Revtex, 9 eps-figures, accepted for publication in J. Chem. Phy

    A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    Get PDF
    Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15)N/(14)N stable isotope abundance ratio (δ(15)N) when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants) and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15)N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15)N cannot be explained by classic ant-feeding (myrmecotrophy) but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna). Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant

    The mechanics of nectar offloading in the bumblebee Bombus terrestris and implications for optimal concentrations during nectar foraging.

    Get PDF
    Nectar is a common reward provided by plants for pollinators. More concentrated nectar is more rewarding, but also more viscous, and hence more time-consuming to drink. Consequently, theory predicts an optimum concentration for maximizing energy uptake rate, dependent on the mechanics of feeding. For social pollinators such as bumblebees, another important but little-studied aspect of foraging is nectar offloading upon return to the nest. Studying the bumblebee Bombus terrestris, we found that the relationship between viscosity (µ) and volumetric transfer rates (Q) of sucrose solutions differed between drinking and offloading. For drinking, Q ∝ µ-0.180, in good agreement with previous work. Although offloading was quicker than drinking, offloading rate decreased faster with viscosity, with Q ∝ µ-0.502, consistent with constraints imposed by fluid flow through a tube. The difference in mechanics between drinking and offloading nectar leads to a conflict in the optimum concentration for maximizing energy transfer rates. Building a model of foraging energetics, we show that including offloading lowers the maximum rate of energy return to the nest and reduces the concentration which maximizes this rate by around 3%. Using our model, we show that published values of preferred nectar sugar concentrations suggest that bumblebees maximize the overall energy return rather than the instantaneous energy uptake during drinking.This work was supported by a Biotechnology and Biological Sciences Research Council PhD Studentship under grant BB/J014540/1 to J.G.P

    Elastic modulus of tree frog adhesive toe pads

    Get PDF
    Previous work using an atomic force microscope in nanoindenter mode indicated that the outer, 10- to 15-μm thick, keratinised layer of tree frog toe pads has a modulus of elasticity equivalent to silicone rubber (5–15 MPa) (Scholz et al. 2009), but gave no information on the physical properties of deeper structures. In this study, micro-indentation is used to measure the stiffness of whole toe pads of the tree frog, Litoria caerulea. We show here that tree frog toe pads are amongst the softest of biological structures (effective elastic modulus 4–25 kPa), and that they exhibit a gradient of stiffness, being stiffest on the outside. This stiffness gradient results from the presence of a dense network of capillaries lying beneath the pad epidermis, which probably has a shock absorbing function. Additionally, we compare the physical properties (elastic modulus, work of adhesion, pull-off force) of the toe pads of immature and adult frogs

    Safety of liver resection and effect on quality of life in patients with benign hepatic disease: Single center experience

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although liver resection has long been established for selected patients with benign hepatic disease, the success of surgical treatment of these patients cannot be evaluated exclusively through postoperative morbidity and mortality. Therefore, the aim of the study was to prove the safety of liver resection in the treatment of benign liver tumors and to evaluate the effect of surgical treatment on the patients' qauality of life.</p> <p>Methods</p> <p>A total of 146 patients who underwent liver resection because of benign liver tumors were included in this study. Postoperative outcome was assessed and patients evaluated their quality of life before surgery and at the present time using the European Organization for Research and Treatment of Cancer Quality of Life Questionnaire Core-30 (QLQ C-30).</p> <p>Results</p> <p>The rate of serious (> grade 2) complications was 4.1% with no postoperative death. The quality of life assessment revealed an overall improvement of general health status after resection (0.7 vs. 0.56, p < 0.001) and additionally a significant reduction of 6 out of 9 symptoms. Furthermore, compelling benefits in the patients' social and emotional coping could be detected after surgery.</p> <p>Conclusions</p> <p>Liver resection for benign liver disease is a safe procedure and leads to a significant improvement of quality of life in selected patients.</p

    A Combination of Independent Transcriptional Regulators Shapes Bacterial Virulence Gene Expression during Infection

    Get PDF
    Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both ΔccpA and ΔcovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, ΔccpA and ΔcovRΔccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the ΔccpA and ΔcovRΔccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection

    CovR-Controlled Global Regulation of Gene Expression in Streptococcus mutans

    Get PDF
    CovR/S is a two-component signal transduction system (TCS) that controls the expression of various virulence related genes in many streptococci. However, in the dental pathogen Streptococcus mutans, the response regulator CovR appears to be an orphan since the cognate sensor kinase CovS is absent. In this study, we explored the global transcriptional regulation by CovR in S. mutans. Comparison of the transcriptome profiles of the wild-type strain UA159 with its isogenic covR deleted strain IBS10 indicated that at least 128 genes (∼6.5% of the genome) were differentially regulated. Among these genes, 69 were down regulated, while 59 were up regulated in the IBS10 strain. The S. mutans CovR regulon included competence genes, virulence related genes, and genes encoded within two genomic islands (GI). Genes encoded by the GI TnSmu2 were found to be dramatically reduced in IBS10, while genes encoded by the GI TnSmu1 were up regulated in the mutant. The microarray data were further confirmed by real-time RT-PCR analyses. Furthermore, direct regulation of some of the differentially expressed genes was demonstrated by electrophoretic mobility shift assays using purified CovR protein. A proteomic study was also carried out that showed a general perturbation of protein expression in the mutant strain. Our results indicate that CovR truly plays a significant role in the regulation of several virulence related traits in this pathogenic streptococcus
    corecore