1,318 research outputs found

    Classical and Quantum-like approaches to Charged-Particle Fluids in a Quadrupole

    Get PDF
    A classical description of the dynamics of a dissipative charged-particle fluid in a quadrupole-like device is developed. It is shown that the set of the classical fluid equations contains the same information as a complex function satisfying a Schrodinger-like equation in which Planck's constant is replaced by the time-varying emittance, which is related to the time-varying temperature of the fluid. The squared modulus and the gradient of the phase of this complex function are proportional to the fluid density and to the current velocity, respectively. Within this framework, the dynamics of an electron bunch in a storage ring in the presence of radiation damping and quantum-excitation is recovered. Furthermore, both standard and generalized (including dissipation) coherent states that may be associated with the classical particle fluids are fully described in terms of the above formalism.Comment: LaTex, to appear in Physica Script

    Nonlocal effects in high energy charged particle beams

    Full text link
    Within the framework of the thermal wave model, an investigation is made of the longitudinal dynamics of high energy charged particle beams. The model includes the self-consistent interaction between the beam and its surroundings in terms of a nonlinear coupling impedance, and when resistive as well as reactive parts are included, the evolution equation becomes a generalised nonlinear Schroedinger equation including a nonlocal nonlinear term. The consequences of the resistive part on the propagation of particle bunches are examined using analytical as well as numerical methods.Comment: 6 pages, 6 figures, uses RevTeX

    On the Absence of Continuous Symmetries for Noncommutative 3-Spheres

    Full text link
    A large class of noncommutative spherical manifolds was obtained recently from cohomology considerations. A one-parameter family of twisted 3-spheres was discovered by Connes and Landi, and later generalized to a three-parameter family by Connes and Dubois-Violette. The spheres of Connes and Landi were shown to be homogeneous spaces for certain compact quantum groups. Here we investigate whether or not this property can be extended to the noncommutative three-spheres of Connes and Dubois-Violette. Upon restricting to quantum groups which are continuous deformations of Spin(4) and SO(4) with standard co-actions, our results suggest that this is not the case.Comment: 15 pages, no figure

    Organic molecules in the protoplanetary disk of DG Tau revealed by ALMA

    Get PDF
    Planets form in protoplanetary disks and inherit their chemical compositions. It is thus crucial to map the distribution and investigate the formation of simple organics, such as formaldehyde and methanol, in protoplanetary disks. We analyze ALMA observations of the nearby disk-jet system around the T Tauri star DG Tau in the o-H2_2CO 31,221,13_{1,2}-2_{1,1} and CH3_3OH 32,241,43_{-2,2}-4_{-1,4} E, 50,540,45_{0,5}-4_{0,4} A transitions at an unprecedented resolution of 0.15"\sim0.15", i.e., 18\sim18 au at a distance of 121 pc. The H2_2CO emission originates from a rotating ring extending from 40\sim40 au with a peak at 62\sim62 au, i.e., at the edge of the 1.3mm dust continuum. CH3_3OH emission is not detected down to an r.m.s. of 3 mJy/beam in the 0.162 km/s channel. Assuming an ortho-to-para ratio of 1.8-2.8 the ring- and disk-height-averaged H2_2CO column density is 0.34×1014\sim0.3-4\times10^{14} cm2^{-2}, while that of CH3_3OH is <0.040.7×1014<0.04-0.7\times10^{14} cm2^{-2}. In the inner 4040 au no o-H2_2CO emission is detected with an upper limit on its beam-averaged column density of 0.56×1013\sim0.5-6\times10^{13} cm2^{-2}. The H2_2CO ring in the disk of DG Tau is located beyond the CO iceline (RCO30_{\rm CO}\sim30 au). This suggests that the H2_2CO abundance is enhanced in the outer disk due to formation on grain surfaces by the hydrogenation of CO ice. The emission peak at the edge of the mm dust continuum may be due to enhanced desorption of H2_2CO in the gas phase caused by increased UV penetration and/or temperature inversion. The CH3_3OH/H2_2CO abundance ratio is <1<1, in agreement with disk chemistry models. The inner edge of the H2_2CO ring coincides with the radius where the polarization of the dust continuum changes orientation, hinting at a tight link between the H2_2CO chemistry and the dust properties in the outer disk and at the possible presence of substructures in the dust distribution.Comment: 8 pages, 6 figures, accepted for publication on A&A Letter

    Gaia DR2 view of the Lupus V-VI clouds: the candidate diskless young stellar objects are mainly background contaminants

    Get PDF
    Extensive surveys of star-forming regions with Spitzer have revealed populations of disk-bearing young stellar objects. These have provided crucial constraints, such as the timescale of dispersal of protoplanetary disks, obtained by carefully combining infrared data with spectroscopic or X-ray data. While observations in various regions agree with the general trend of decreasing disk fraction with age, the Lupus V and VI regions appeared to have been at odds, having an extremely low disk fraction. Here we show, using the recent Gaia data release 2 (DR2), that these extremely low disk fractions are actually due to a very high contamination by background giants. Out of the 83 candidate young stellar objects (YSOs) in these clouds observed by Gaia, only five have distances of 150 pc, similar to YSOs in the other Lupus clouds, and have similar proper motions to other members in this star-forming complex. Of these five targets, four have optically thick (Class II) disks. On the one hand, this result resolves the conundrum of the puzzling low disk fraction in these clouds, while, on the other hand, it further clarifies the need to confirm the Spitzer selected diskless population with other tracers, especially in regions at low galactic latitude like Lupus V and VI. The use of Gaia astrometry is now an independent and reliable way to further assess the membership of candidate YSOs in these, and potentially other, star-forming regions.Comment: Accepted for publication on Astronomy&Astrophysics Letter

    Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation

    Full text link
    On the basis of recent investigations, a newly developed analytical procedure is used for constructing a wide class of localized solutions of the controlled three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a variational condition for the controlling potential. Then, the above class of localized solutions are constructed as the product of the solutions of the transverse and longitudinal equations. On the basis of these exact 3D analytical solutions, a stability analysis is carried out, focusing our attention on the physical conditions for having collapsing or non-collapsing solutions.Comment: 21 pages, 14 figure

    X-Shooter study of accretion in Chamaeleon I: II. A steeper increase of accretion with stellar mass for very low mass stars?

    Get PDF
    The dependence of the mass accretion rate on the stellar properties is a key constraint for star formation and disk evolution studies. Here we present a study of a sample of stars in the Chamaeleon I star forming region carried out using the VLT/X-Shooter spectrograph. The sample is nearly complete down to M~0.1Msun for the young stars still harboring a disk in this region. We derive the stellar and accretion parameters using a self-consistent method to fit the broad-band flux-calibrated medium resolution spectrum. The correlation between the accretion luminosity to the stellar luminosity, and of the mass accretion rate to the stellar mass in the logarithmic plane yields slopes of 1.9 and 2.3, respectively. These slopes and the accretion rates are consistent with previous results in various star forming regions and with different theoretical frameworks. However, we find that a broken power-law fit, with a steeper slope for stellar luminosity smaller than ~0.45 Lsun and for stellar masses smaller than ~ 0.3 Msun, is slightly preferred according to different statistical tests, but the single power-law model is not excluded. The steeper relation for lower mass stars can be interpreted as a faster evolution in the past for accretion in disks around these objects, or as different accretion regimes in different stellar mass ranges. Finally, we find two regions on the mass accretion versus stellar mass plane empty of objects. One at high mass accretion rates and low stellar masses, which is related to the steeper dependence of the two parameters we derived. The second one is just above the observational limits imposed by chromospheric emission. This empty region is located at M~0.3-0.4Msun, typical masses where photoevaporation is known to be effective, and at mass accretion rates ~10^-10 Msun/yr, a value compatible with the one expected for photoevaporation to rapidly dissipate the inner disk.Comment: Accepted for publication on Astronomy & Astrophysics. Abstract shortened for arxiv constraints. Revised version after language editin

    V1647 Orionis: One Year into Quiescence

    Full text link
    We present new optical, near-IR, and mid-IR observations of the young eruptive variable star V1647 Orionis that went into outburst in late 2004 for approximately two years. Our observations were taken one year after the star had faded to its pre-outburst optical brightness and show that V1647Ori is still actively accreting circumstellar material. We compare and contrast these data with existing observations of the source from both pre-outburst and outburst phases. From near-IR spectroscopy we identify photospheric absorption features for the first time that allow us to constrain the classification of the young star itself. Our best fit spectral type is M0+-2 sub-classes with a visual extinction of 19+-2 magnitudes and a K-band veiling of rK~1.5+-0.2. We estimate that V1647Ori has a quiescent bolometric luminosity of ~9.5Lsun and a mass accretion rate of ~1.10^-6Msun yr^-1. Our derived mass and age, from comparison with evolutionary models, are 0.8+-0.2 Msun and ~0.5Myrs, respectively. The presence towards the star of shock excited optical [S II] and [Fe II] emission as well as near-IR H2 and [Fe II] emission perhaps suggests that a new Herbig-Haro flow is becoming visible close to the star.Comment: 22 pages, 19 Figures, accepted AJ 13 October 200

    Microscopic Derivation of Non-Markovian Thermalization of a Brownian Particle

    Full text link
    In this paper, the first microscopic approach to the Brownian motion is developed in the case where the mass density of the suspending bath is of the same order of magnitude as that of the Brownian (B) particle. Starting from an extended Boltzmann equation, which describes correctly the interaction with the fluid, we derive systematicaly via the multiple time-scale analysis a reduced equation controlling the thermalization of the B particle, i.e. the relaxation towards the Maxwell distribution in velocity space. In contradistinction to the Fokker-Planck equation, the derived new evolution equation is non-local both in time and in velocity space, owing to correlated recollision events between the fluid and particle B. In the long-time limit, it describes a non-markovian generalized Ornstein-Uhlenbeck process. However, in spite of this complex dynamical behaviour, the Stokes-Einstein law relating the friction and diffusion coefficients is shown to remain valid. A microscopic expression for the friction coefficient is derived, which acquires the form of the Stokes law in the limit where the mean-free in the gas is small compared to the radius of particle B.Comment: 28 pages, no figure, submitted to Journal of Statistical Physic
    corecore