2,350 research outputs found

    Coherent instabilities of intense high-energy "white" charged-particle beams in the presence of nonlocal effects within the context of the Madelung fluid description

    Full text link
    A hydrodynamical description of coherent instabilities that take place in the longitudinal dynamics of a charged-particle coasting beam in a high-energy accelerating machine is presented. This is done in the framework of the Madelung fluid picture provided by the Thermal Wave Model. The well known coherent instability charts in the complex plane of the longitudinal coupling impedance for monochromatic beams are recovered. The results are also interpreted in terms of the deterministic approach to modulational instability analysis usually given for monochromatic large amplitude wave train propagation governed by the nonlinear Schr\"odinger equation. The instability analysis is then extended to a non-monochromatic coasting beam with a given thermal equilibrium distribution, thought as a statistical ensemble of monochromatic incoherent coasting beams ("white" beam). In this hydrodynamical framework, the phenomenon of Landau damping is predicted without using any kinetic equation governing the phase space evolution of the system.Comment: 14 pages, 1 figur

    Dynamics of the wakefield of a multi-petawatt, femtosecond laser pulse in a configuration with ultrarelativistic electrons

    Get PDF
    The wake field excitation in an unmagnetized plasma by a multi-petawatt, femtosecond, pancake-shaped laser pulse is described both analytically and numerically in the regime with ultrarelativistic electron jitter velocities, when the plasma electrons are almost expelled from the pulse region. This is done, for the first time, in fluid theory. A novel mathematical model is devised that does not break down for very intense pump strengths, in contrast to the standard approach that uses the laser field envelope and the ponderomotive guiding center averaging. This is accomplished by employing a three-timescale description, with the intermediate scale associated with the nonlinear phase of the electromagnetic wave and with the bending of its wave front. The evolution of the pulse and of its electrostatic wake are studied by the numerical solution in a two-dimensional geometry, with the spot diameter \geq 100 microns. It reveals that the optimum initial pulse length needs to be somewhat bigger than 1 micron (1-2 oscillations), as suggested by simple analytical local estimates, because the nonlocal plasma response tends to stretch very short pulses

    Classical and Quantum-like approaches to Charged-Particle Fluids in a Quadrupole

    Get PDF
    A classical description of the dynamics of a dissipative charged-particle fluid in a quadrupole-like device is developed. It is shown that the set of the classical fluid equations contains the same information as a complex function satisfying a Schrodinger-like equation in which Planck's constant is replaced by the time-varying emittance, which is related to the time-varying temperature of the fluid. The squared modulus and the gradient of the phase of this complex function are proportional to the fluid density and to the current velocity, respectively. Within this framework, the dynamics of an electron bunch in a storage ring in the presence of radiation damping and quantum-excitation is recovered. Furthermore, both standard and generalized (including dissipation) coherent states that may be associated with the classical particle fluids are fully described in terms of the above formalism.Comment: LaTex, to appear in Physica Script

    Nonlocal effects in high energy charged particle beams

    Full text link
    Within the framework of the thermal wave model, an investigation is made of the longitudinal dynamics of high energy charged particle beams. The model includes the self-consistent interaction between the beam and its surroundings in terms of a nonlinear coupling impedance, and when resistive as well as reactive parts are included, the evolution equation becomes a generalised nonlinear Schroedinger equation including a nonlocal nonlinear term. The consequences of the resistive part on the propagation of particle bunches are examined using analytical as well as numerical methods.Comment: 6 pages, 6 figures, uses RevTeX

    Measuring elemental abundance ratios in protoplanetary disks at millimeter wavelengths

    Get PDF
    During the million years of evolution, gas dust and ice in protoplanetary disks can be chemically reprocessed. There are evidences that the gas-phase carbon and oxygen abundances are sub-solar in disks belonging to nearby star forming regions. These findings have a major impact on the composition of the primary atmosphere of giant planets (but it may also be valid for super-Earths and sub-Neptunes) as they accrete their gaseous envelopes from the surrounding material in the disk. In this study, we performed a thermo-chemical modelling analysis with the aim at testing how reliable and robust are the estimates of elemental abundance ratios based on (sub-)millimeter observations of molecular lines. We created a grid of disk models for the following different elemental abundance ratios: C/O, N/O and S/O, and, we computed the line flux of a set of carbon-, nitrogen and sulphur-bearing species, namely CN, HCN, NO, C2_{2}H, c--C3_{3}H2_{2}, H2_{2}CO, HC3_{3}N, CH3_{3}CN, CS, SO, H2_{2}S and H2_{2}CS, that have been detected with present (sub-)millimeter facilities such as ALMA and NOEMA. We find that the line fluxes, once normalized to the flux of the 13^{13}CO J=21J=2-1 line, are sensitive to the elemental abundance ratios. On the other hand, the stellar and disk physical parameters have only a minor effect of the line flux ratios. Our results demonstrate that a simultaneous analysis of multiple molecular transitions is a valid approach to constrain the elemental abundance ratio in protoplanetary disks.Comment: Accepted for publication to A&

    Landau damping of partially incoherent Langmuir waves

    Full text link
    It is shown that partial incoherence, in the form of stochastic phase noise, of a Langmuir wave in an unmagnetized plasma gives rise to a Landau-type damping. Starting from the Zakharov equations, which describe the nonlinear interaction between Langmuir and ion-acoustic waves, a kinetic equation is derived for the plasmons by introducing the Wigner-Moyal transform of the complex Langmuir wave field. This equation is then used to analyze the stability properties of small perturbations on a stationary solution consisting of a constant amplitude wave with stochastic phase noise. The concomitant dispersion relation exhibits the phenomenon of Landau-like damping. However, this damping differs from the classical Landau damping in which a Langmuir wave, interacting with the plasma electrons, loses energy. In the present process, the damping is non-dissipative and is caused by the resonant interaction between an instantaneously-produced disturbance, due to the parametric interactions, and a partially incoherent Langmuir wave, which can be considered as a quasi-particle composed of an ensemble of partially incoherent plasmons.Comment: 12 page

    Coherent States for Particle Beams in the Thermal Wave Model

    Get PDF
    In this paper, by using an analogy among {\it quantum mechanics}, {\it electromagnetic beam optics in optical fibers}, and {\it charge particle beam dynamics}, we introduce the concept of {\it coherent states} for charged particle beams in the framework of the {\it Thermal Wave Model} (TWM). We give a physical meaning of the Gaussian-like coherent structures of charged particle distribution that are both naturally and artificially produced in an accelerating machine in terms of the concept of coherent states widely used in quantum mechanics and in quantum optics. According to TWM, this can be done by using a Schr\"{o}dinger-like equation for a complex function, the so-called {\it beam wave function} (BWF), whose squared modulus is proportional to the transverse beam density profile, where Planck's constant and the time are replaced by the transverse beam emittance and by the propagation coordinate, respectively. The evolution of the particle beam, whose initial BWF is assumed to be the simplest coherent state (ground-like state) associated with the beam, in an infinite 1-D quadrupole-like device with small sextupole and octupole aberrations, is analytically and numerically investigated.Comment: 21 pages, Late

    Self modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Full text link
    Self modulated dynamics of a relativistic charged particle beam is reviewed within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.Comment: This is a 10 pages manuscript which contain 4 figures. This manuscript is recently submitted in 'Nuclear Instruments and Methods in Physics Research Section A' as a proceeding of the conference 'EAAC 2015

    Optical and infrared properties of V1647 Orionis during the 2003-2006 outburst. II. Temporal evolution of the eruptive source

    Full text link
    The occurrence of new FU Orionis-like objects is fundamental to understand the outburst mechanism in young stars and their role in star formation and disk evolution. Our work is aimed at investigating the properties of the recent outburst of V1647 Ori. Using optical and mid infrared long slit spectroscopy we monitored V1647 Ori in outburst between February 2004 and January 2006. The optical spectrum is characterized by Halpha and Hbeta in P-Cygni profile and by many weak FeI and FeII emission lines. Short timescale variability was measured in the continuum and line emission. On January 2006 we detected for the first time forbidden emission lines ([OI], [SII] and [FeII]). These lines are likely produced by an Herbig-Haro object driven by V1647 Ori. The mid infrared the spectrum of V1647 Ori is flat and featureless at all epochs. The SED changed drastically: the source was much redder in the early outburst than in the final phase. The magnitude rise and the SED of V1647 Ori resembles that of a FUor while the duration and recurrence of the outburst resemble that of a EXor. The optical spectrum is clearly distinct from either the absorption line spectrum of a FUor or the T Tauri-like spectrum of an EXor. Our data are consistent with a disk instability event which led to an increase of the mass accretion rate. The data also suggest the presence of a circumstellar envelope around the star+disk system. The peculiar N band spectrum might be explained by dust sublimation in the outer layers of the disk. The presence of the envelope and the outburst statistics suggest that these instability events occur only in a specific stage of a Class I source (e.g. in the transition phase to an optically visible star surrounded by a protoplanetary disk). We discuss the outburst mechanisms in term of the thermal instability model.Comment: 12 pages, 7 figures, accepted for publication in A&

    Kinematics signature of a giant planet in the disk of AS 209

    Full text link
    [abridged] ALMA observations of dust in protoplanetary disks are revealing the existence of sub-structures such as rings, gaps and cavities. Such morphology are expected to be the outcome of dynamical interaction between the disk and planets. However, other mechanisms are able to produce similar dust sub-structures. A solution is to look at the perturbation induced by the planet to the gas surface density and/or to the kinematics. In the case of the disk around AS 209, a prominent gap has been reported in the surface density of CO at r100r \sim 100\,au. Recently, Bae et al. (2022) detected a localized velocity perturbation in the 12^{12}CO J=21J=2-1 emission along with a clump in 13^{13}CO J=21J=2-1 at nearly 200 au, interpreted as a gaseous circumplanetary disk. We report a new analysis of ALMA archival observations of 12^{12}CO and 13^{13}CO J=2-1. A clear kinematics perturbation (kink) is detected in multiple channels and over a wide azimuth range in both dataset. We compared the observed perturbation with a semi-analytic model of velocity perturbations due to planet-disk interaction. The observed kink is not consistent with a planet at 200\,au as this would require a low gas disk scale height (<0.05< 0.05) in contradiction with previous estimate (h/r0.118h/r \sim 0.118 at r=100r = 100 au). When we fix the disk scale height to 0.118 (at r=100r = 100 au) we find instead that a planet of 3-5 MJup_{\rm Jup} at 100 au induces a kinematics perturbation similar to the observed one. Thus, we conclude that a giant protoplanet orbiting at r100r \sim 100\,au is responsible of the large scale kink as well as of the perturbed dust and gas surface density previously detected. The position angle of the planet is constrained to be between 60^{\circ}-100^{\circ}. Future observations with high contrast imaging technique in the near- and mid- infrared are needed to confirm the presence and position of such a planet.Comment: Accepted by A&
    corecore