14 research outputs found

    An N-terminal, 830 residues intrinsically disordered region of the cytoskeleton-regulatory protein supervillin contains Myosin II- and F-actin-binding sites

    No full text
    Supervillin, the largest member of the villin/gelsolin family, is a cytoskeleton regulating, peripheral membrane protein. Supervillin increases cell motility and promotes invasive activity in tumors. Major cytoskeletal interactors, including filamentous actin and myosin II, bind within the unique supervillin amino terminus, amino acids 1-830. The structural features of this key region of the supervillin polypeptide are unknown. Here, we utilize circular dichroism and bioinformatics sequence analysis to demonstrate that the N-terminal part of supervillin forms an extended intrinsically disordered region (IDR). Our combined data indicate that the N-terminus of human and bovine supervillin sequences (positions 1-830) represents an IDR, which is the largest IDR known to date in the villin/gelsolin family. Moreover, this result suggests a potentially novel mechanism of regulation of myosin II and F-actin via the intrinsically disordered N-terminal region of hub protein supervillin

    8-Oxoguanine Affects DNA Backbone Conformation in the EcoRI Recognition Site and Inhibits Its Cleavage by the Enzyme.

    No full text
    8-oxoguanine is one of the most abundant and impactful oxidative DNA lesions. However, the reasons underlying its effects, especially those not directly explained by the altered base pairing ability, are poorly understood. We report the effect of the lesion on the action of EcoRI, a widely used restriction endonuclease. Introduction of 8-oxoguanine inside, or adjacent to, the GAATTC recognition site embedded within the Drew-Dickerson dodecamer sequence notably reduced the EcoRI activity. Solution NMR revealed that 8-oxoguanine in the DNA duplex causes substantial alterations in the sugar-phosphate backbone conformation, inducing a BI→BII transition. Moreover, molecular dynamics of the complex suggested that 8-oxoguanine, although does not disrupt the sequence-specific contacts formed by the enzyme with DNA, shifts the distribution of BI/BII backbone conformers. Based on our data, we propose that the disruption of enzymatic cleavage can be linked with the altered backbone conformation and dynamics in the free oxidized DNA substrate and, possibly, at the protein-DNA interface

    Gelsolin-like Activation of Villin: Calcium Sensitivity of the Long Helix in Domain 6

    No full text
    Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1–V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin’s functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-<i>K</i><sub>d</sub> calcium binding in V6 (<i>K</i><sub>d1</sub> of 22 μM and <i>K</i><sub>d2</sub> of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism

    Gelsolin-like Activation of Villin: Calcium Sensitivity of the Long Helix in Domain 6

    No full text
    Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1–V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin’s functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-<i>K</i><sub>d</sub> calcium binding in V6 (<i>K</i><sub>d1</sub> of 22 μM and <i>K</i><sub>d2</sub> of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism

    Gelsolin-like Activation of Villin: Calcium Sensitivity of the Long Helix in Domain 6

    No full text
    Villin is a gelsolin-like cytoskeleton regulator localized in the brush border at the apical end of epithelial cells. Villin regulates microvilli by bundling F-actin at low calcium levels and severing it at high calcium levels. The villin polypeptide consists of six gelsolin-like repeats (V1–V6) and the unique, actin binding C-terminal headpiece domain (HP). Villin modular fragment V6-HP requires calcium to stay monomeric and bundle F-actin. Our data show that isolated V6 is monomeric and does not bind F-actin at any level of calcium. We propose that the 40-residue unfolded V6-to-HP linker can be a key regulatory element in villin’s functions such as its interactions with F-actin. Here we report a calcium-bound solution nuclear magnetic resonance (NMR) structure of V6, which has a gelsolin-like fold with the long α-helix in the extended conformation. Intrinsic tryptophan fluorescence quenching reveals two-<i>K</i><sub>d</sub> calcium binding in V6 (<i>K</i><sub>d1</sub> of 22 μM and <i>K</i><sub>d2</sub> of 2.8 mM). According to our NMR data, the conformation of V6 responds the most to micromolar calcium. We show that the long α-helix and the adjacent residues form the calcium-sensitive elements in V6. These observations are consistent with the calcium activation of F-actin severing by villin analogous to the gelsolin helix-straightening mechanism

    Results from the NMR-driven restrained molecular dynamics simulation of oxoG4 and oxoG10.

    No full text
    <p>(A) The difference in backbone conformation between BI and BII conformations. ε and ζ are highlighted in accordance to their torsion angle definition, as BI and BII are defined by the ε–ζ. For both DDD BI and oxoG4 BII structures, the G<sub>4</sub> and A<sub>5</sub> are shown and rotated to highlight the backbone differences. The DDD BI conformation (left panel) is from the PDB ID INAJ structure. The BII conformation induced by oxoG4 (right panel) is from our averaged minimized structure, PDB ID 5IV1. Carbons are shown in black, oxygen is shown in red, nitrogen in blue and hydrogens in white. The additional oxygen at C8 and hydrogen at N7 in the oxoG<sub>4</sub> base are color-coded in the same way. (B) The ε–ζ shows BII directly 3' of the modification site for oxoG4 and oxoG10. BI is defined as ε–ζ less than 20°, with over 20° defined as BII. The nucleotide sequence numbers correspond to the steps in the sequence, with ε–ζ for nucleotide step 1 corresponding to the torsion angles between C<sub>1</sub> and G<sub>2</sub> in C<sub>1</sub>G<sub>2</sub>C<sub>3</sub>G<sub>4</sub>A<sub>5</sub>A<sub>6</sub>T<sub>7</sub>T<sub>8</sub>C<sub>9</sub>G<sub>10</sub>C<sub>11</sub>G<sub>12</sub>. In black with open square markers, are the ε–ζ for 1NAJ (DDD). In red with closed square markers are ε–ζ for oxoG4 and blue with closed circle markers are oxoG10. (C) oxoG4 and oxoG10 cause significant unwinding near the modification site. Color schemes and data origins are the same as in panel B.</p
    corecore