24 research outputs found

    Effect of feeding of prefermented bioproduct containing gamma-linolenic acid and beta-carotene on selected parameters of broiler chicken meat quality

    Get PDF
    The aim of the work was to evaluate the effect of addition of prefermented bioproduct with a increased content of polyunsaturated fatty acids (especially gamma-linolenic acid) and beta-carotene into commercial feed on the selected qualitative parameters. The chemical composition, the color, the loss of water, the pH and the concentration of lactic acid of the meat of broiler chickens (COBB 500) were monitored. Bioproduct was prepared from corn scrap, which was fermented using the lower filamentous fungus Umbelopsis isabellina CCF2412. The prepared material was mixed into the commercial compound feed intended for broiler chickens at a ratio of 10%, and was fed from the 11th day of age of the chickens until the time of slaughter. The obtained results were compared with the results of control group, which was represented by broiler chickens fed only with a commercial compound feed. Feeding of bioproduct, in terms of chemical composition, affected mainly the fat content in breast and thigh meat, which was lower in the experimental group. Meat color (measured by colorimetric assay) was not affected and differences were significant only at a value a*, which was higher in the experimental group. Statistically significant differences in the water losses of meat were not recorded, but the feeding of bioproduct affected the pH of the meat, and also the concentration of lactic acid and both parameters were higher in the meat of control group

    Lactobacillus Dominate in the Intestine of Atlantic Salmon Fed Dietary Probiotics

    Get PDF
    Probiotics, the live microbial strains incorporated as dietary supplements, are known to provide health benefits to the host. These live microbes manipulate the gut microbial community by suppressing the growth of certain intestinal microbes while enhancing the establishment of some others. Lactic acid bacteria (LAB) have been widely studied as probiotics; in this study we have elucidated the effects of two fish-derived LAB types (RII and RIII) on the distal intestinal microbial communities of Atlantic salmon (Salmo salar). We employed high-throughput 16S rRNA gene amplicon sequencing to investigate the bacterial communities in the distal intestinal content and mucus of Atlantic salmon fed diets coated with the LABs or that did not have microbes included in it. Our results show that the supplementation of the microbes shifts the intestinal microbial profile differentially. LAB supplementation did not cause any significant alterations in the alpha diversity of the intestinal content bacteria but RIII feeding increased the bacterial diversity in the intestinal mucus of the fish. Beta diversity analysis revealed significant differences between the bacterial compositions of the control and LAB-fed groups. Lactobacillus was the dominant genus in LAB-fed fish. A few members of the phyla Tenericutes, Proteobacteria, Actinobacteria, and Spirochaetes were also found to be abundant in the LAB-fed groups. Furthermore, the bacterial association network analysis showed that the co-occurrence pattern of bacteria of the three study groups were different. Dietary probiotics can modulate the composition and interaction of the intestinal microbiota of Atlantic salmon

    The impact of cooling methods on microbiological quality of broiler carcasses

    No full text
    <p>The aim of this work was to compare two chilling methods, combined (aerosol) and water chilling, in terms of their effectiveness in chilling of different weight categories of broiler chickens. At the same time microbial associations of different weight categories of broiler chickens were evaluated. Samples were collected in an approved establishment and poultry carcasses were divided according to weight and chilling methods into five categories. The first four categories were chilled using combined chilling method and fifth category was chilled with water. The temperature of the breast muscle before and after chilling and microbiological parameters (total viable count,<em> Enterobacteriaceae, Salmonella</em>) was measured. By comparing the temperature of the breast muscle after combined chilling method was not achieved in the breast muscles temperature below 4 &deg;C in all weight categories. In any case, the lowest average temperature has been reached in the weight category &lt;1.2 kg (4.9 &deg;C) and with increasing weight, the average temperature was rising, and the highest was in weight category 1.8 to 2.5 kg (10.8 &deg;C). Poultry carcasses were subsequently divided into portions and after cutting were chilled up to a temperature below 4 &deg;C. In poultry carcasses chilled by water, the average temperature of the breast muscle after 20 minutes in the water bath was even higher (19.6 &deg;C) compared to combine chilling. Thus chilled poultry carcasses were frozen up to -18 &deg;C in a core of muscles. Comparing the microbiological contamination in different weight categories and chilling techniques, we found that the lowest total viable count (TVC) before and after chilling was in the lowest category and the difference before chilling was significantly lower comparing with all other categories. Conversely TVC after chilling by water was decreased. In comparing the number of <em>Enterobacteriaceae</em> before and after chilling, a similar pattern of contamination as above was found. Microbiological examination of samples of poultry carcasses did not detect the presence of <em>Salmonella.</em></p

    Improving fermentation of Saccharina latissima and Alaria esculenta silages with additives for preserving biomass and antioxidants

    Get PDF
    Rapid deterioration of harvested macroalgal biomass is a challenge for macroalgal industry and can be overcome with the inexpensive ensiling preservation. To improve silage quality, Saccharina latissima and Alaria esculenta biomass was subjected to ensiling conditions following a 2 × 4 factorial design, with 2 prewilting treatments (no-prewilting and prewilted to 300 g DM kg−1 fresh biomass) and 4 additive treatments (no additive, formic acid, single and two species of Lactobacillus inoculant), and ensiled for 3 or 12 months at 15 °C. Acetate was the main fermentation product in these seaweed silages. Prewilting reduced the acetate, mannitol, and NH3 content in silages. In S. latissima silages without additives, prewilting led to less acidification (pH = 5.7). Also, prewilting caused protein and phlorotannin degradation. When treated with formic acid, the silage pH was below 4 regardless of the biomass’s moisture content. The use of Lactobacillus spp. inoculants was essential for lactate production in seaweed silages, and it significantly lowered silage pH in S. latissima and prewilted A. esculenta compared to silages with no additives. A high level of the phlorotannin content was preserved (> 90%) in the 3-month A. esculenta silages without prewilting. However, major reduction of antioxidant activity was observed in 12-month silages in both seaweed species. In conclusion, ensiling is a viable method for preserving Alaria and Saccharina biomass. Prewilting restricted silage fermentation, and both formic acid and bacterial additives facilitated silage acidification. However, there was no clear benefit of these treatments in preserving the antioxidant activity

    Improving fermentation of Saccharina latissima and Alaria esculenta silages with additives for preserving biomass and antioxidants

    No full text
    Rapid deterioration of harvested macroalgal biomass is a challenge for macroalgal industry and can be overcome with the inexpensive ensiling preservation. To improve silage quality, Saccharina latissima and Alaria esculenta biomass was subjected to ensiling conditions following a 2 × 4 factorial design, with 2 prewilting treatments (no-prewilting and prewilted to 300 g DM kg−1 fresh biomass) and 4 additive treatments (no additive, formic acid, single and two species of Lactobacillus inoculant), and ensiled for 3 or 12 months at 15 °C. Acetate was the main fermentation product in these seaweed silages. Prewilting reduced the acetate, mannitol, and NH3 content in silages. In S. latissima silages without additives, prewilting led to less acidification (pH = 5.7). Also, prewilting caused protein and phlorotannin degradation. When treated with formic acid, the silage pH was below 4 regardless of the biomass’s moisture content. The use of Lactobacillus spp. inoculants was essential for lactate production in seaweed silages, and it significantly lowered silage pH in S. latissima and prewilted A. esculenta compared to silages with no additives. A high level of the phlorotannin content was preserved (> 90%) in the 3-month A. esculenta silages without prewilting. However, major reduction of antioxidant activity was observed in 12-month silages in both seaweed species. In conclusion, ensiling is a viable method for preserving Alaria and Saccharina biomass. Prewilting restricted silage fermentation, and both formic acid and bacterial additives facilitated silage acidification. However, there was no clear benefit of these treatments in preserving the antioxidant activity

    Improving fermentation of Saccharina latissima and Alaria esculenta silages with additives for preserving biomass and antioxidants

    Get PDF
    Rapid deterioration of harvested macroalgal biomass is a challenge for macroalgal industry and can be overcome with the inexpensive ensiling preservation. To improve silage quality, Saccharina latissima and Alaria esculenta biomass was subjected to ensiling conditions following a 2 × 4 factorial design, with 2 prewilting treatments (no-prewilting and prewilted to 300 g DM kg−1 fresh biomass) and 4 additive treatments (no additive, formic acid, single and two species of Lactobacillus inoculant), and ensiled for 3 or 12 months at 15 °C. Acetate was the main fermentation product in these seaweed silages. Prewilting reduced the acetate, mannitol, and NH3 content in silages. In S. latissima silages without additives, prewilting led to less acidification (pH = 5.7). Also, prewilting caused protein and phlorotannin degradation. When treated with formic acid, the silage pH was below 4 regardless of the biomass’s moisture content. The use of Lactobacillus spp. inoculants was essential for lactate production in seaweed silages, and it significantly lowered silage pH in S. latissima and prewilted A. esculenta compared to silages with no additives. A high level of the phlorotannin content was preserved (> 90%) in the 3-month A. esculenta silages without prewilting. However, major reduction of antioxidant activity was observed in 12-month silages in both seaweed species. In conclusion, ensiling is a viable method for preserving Alaria and Saccharina biomass. Prewilting restricted silage fermentation, and both formic acid and bacterial additives facilitated silage acidification. However, there was no clear benefit of these treatments in preserving the antioxidant activity.publishedVersio

    Lactobacillus dominate in the intestine of Atlantic salmon fed dietary probiotics

    Get PDF
    Probiotics, the live microbial strains incorporated as dietary supplements, are known to provide health benefits to the host. These live microbes manipulate the gut microbial community by suppressing the growth of certain intestinal microbes while enhancing the establishment of some others. Lactic acid bacteria (LAB) have been widely studied as probiotics; in this study we have elucidated the effects of two fish-derived LAB types (RII and RIII) on the distal intestinal microbial communities of Atlantic salmon (Salmo salar). We employed high-throughput 16S rRNA gene amplicon sequencing to investigate the bacterial communities in the distal intestinal content and mucus of Atlantic salmon fed diets coated with the LABs or that did not have microbes included in it. Our results show that the supplementation of the microbes shifts the intestinal microbial profile differentially. LAB supplementation did not cause any significant alterations in the alpha diversity of the intestinal content bacteria but RIII feeding increased the bacterial diversity in the intestinal mucus of the fish. Beta diversity analysis revealed significant differences between the bacterial compositions of the control and LAB-fed groups. Lactobacillus was the dominant genus in LAB-fed fish. A few members of the phyla Tenericutes, Proteobacteria, Actinobacteria, and Spirochaetes were also found to be abundant in the LAB-fed groups. Furthermore, the bacterial association network analysis showed that the co-occurrence pattern of bacteria of the three study groups were different. Dietary probiotics can modulate the composition and interaction of the intestinal microbiota of Atlantic salmon
    corecore