4 research outputs found

    The Pierre Auger Observatory: Contributions to the 36th International Cosmic Ray Conference (ICRC 2019) The Pierre Auger Collaboration

    No full text
    International audienc

    The Pierre Auger Observatory: Contributions to the 36th International Cosmic Ray Conference (ICRC 2019) The Pierre Auger Collaboration

    No full text
    International audienc

    The use of aerosol data in Auger Fluorescence Detector analysis

    No full text
    The Pierre Auger Observatory's Fluorescence Detector (FD) consists of 27 telescopes arranged in four sites around the perimeter of the 3000 square kilometre Surface Detector (SD). Cosmic ray extensive air showers are viewed via the nitrogen fluorescence light they induce in the atmosphere. Careful treatment of light attenuation processes must be made, especially given that some showers are viewed at distances in excess of 30 km. Of particular importance is the attenuation due to scattering by aerosol particles, a challenging topic given that aerosol concentrations can vary on time-scales of hours. At the Auger Observatory, the vertical distribution of aerosols is measured hourly with a series of bi-static lidar systems (consisting of central laser facilities and each of the FD sites), and three times per night with a Raman lidar system. In this contribution we describe the use of aerosol profiles in the analysis of air shower data, in particular in the estimation of the cosmic ray primary energy, and the depth of shower maximum, X-max. We also demonstrate how statistical and systematic uncertainties in the aerosol concentrations propagate through to a contribution to energy and X-max uncertainties

    Multi-Messenger Physics With the Pierre Auger Observatory

    Get PDF
    An overview of the multi-messenger capabilities of the Pierre Auger Observatory is presented. The techniques and performance of searching for Ultra-High Energy neutrinos, photons and neutrons are described. Some of the most relevant results are reviewed, such as stringent upper bounds that were placed to a flux of diffuse cosmogenic neutrinos and photons, bounds placed on neutrinos emitted from compact binary mergers that were detected by LIGO and Virgo during their first and second observing runs, as well as searches for high energy photons and neutrons from the Galactic center that constrain the properties of the putative Galactic PeVatron, observed by the H.E.S.S. collaboration. The observation of directional correlations between ultra-high energy cosmic rays and either high energy astrophysical neutrinos or specific source populations, weighted by their electromagnetic radiation, are also discussed. They constitute additional multi-messenger approaches aimed at identifying the sources of high energy cosmic rays. © Copyright © 2019 Kampert, Alejandro Mostafa, Zas and The Pierre Auger Collaboration
    corecore