2,221 research outputs found

    Non-Local Order Parameters as a Probe for Phase Transitions in the Extended Fermi-Hubbard Model

    Full text link
    The Extended Fermi-Hubbard model is a rather studied Hamiltonian due to both its many applications and a rich phase diagram. Here we prove that all the phase transitions encoded in its one dimensional version are detectable via non-local operators related to charge and spin fluctuations. The main advantage in using them is that, in contrast to usual local operators, their asymptotic average value is finite only in the appropriate gapped phases. This makes them powerful and accurate probes to detect quantum phase transitions. Our results indeed confirm that they are able to properly capture both the nature and the location of the transitions. Relevantly, this happens also for conducting phases with a spin gap, thus providing an order parameter for the identification of superconducting and paired superfluid phasesComment: 7 pages, 3 figures; Submitted to EPJ Special Topics, Quantum Gases and Quantum Coherenc

    Translating Video Recordings of Mobile App Usages into Replayable Scenarios

    Full text link
    Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing \approx 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.Comment: In proceedings of the 42nd International Conference on Software Engineering (ICSE'20), 13 page

    Pulse-shape discrimination with PbWO4_4 crystal scintillators

    Full text link
    The light output, α/β\alpha/\beta ratio, and pulse shape have been investigated at 25-25^\circ C with PbWO4_4 crystal scintillators undoped, and doped by F, Eu, Mo, Gd and S. The fast 0.010.06μ0.01-0.06 \mus and middle 0.10.5μ0.1-0.5 \mus components of scintillation decay were observed for all the samples. Slow components of scintillation signal with the decay times 13μ1-3 \mus and 1328μ13-28 \mus with the total intensity up to 50\approx50% have been recognized for several samples doped by Molybdenum. We found some indications of a pulse-shape discrimination between α\alpha particles and γ\gamma quanta with PbWO4_4 (Mo doped) crystal scintillators.Comment: 12 pages, 5 figures, submitted to NIM

    Response of CdWO4 crystal scintillator for few MeV ions and low energy electrons

    Full text link
    The response of a CdWO4 crystal scintillator to protons, alpha particles, Li, C, O and Ti ions with energies in the range 1 - 10 MeV was measured. The non-proportionality of CdWO4 for low energy electrons (4 - 110 keV) was studied with the Compton Coincidence Technique. The energy dependence of the quenching factors for ions and the relative light yield for low energy electrons was calculated using a semi-empirical approach. Pulse-shape discrimination ability between gamma quanta, protons, alpha particles and ions was investigated.Comment: 20 pages, 8 figs, accepted in Nucl. Instrum. Meth.

    Lipid-coated zinc oxide nanocrystals as innovative ROS-generators for photodynamic therapy

    Get PDF
    Photodynamic Therapy (PDT) is a medical treatment that combines the administration of a nontoxic drug, called photosensitizer (PS), with light irradiation of the targeted region. It has been proposed as a new cancer therapy, promising better selectivity and fewer side-effects compared to traditional chemo- and radio-therapies. PSs indeed can accumulate specifically within the region of interest so that when the light is directly focused only in that region the therapeutic effect is highly localized. Traditional PSs, like chlorins and porphyrins, suffer from several drawbacks such as aggregation in biological media and poor biocompatibility. Thus, the development of innovative photosensitizers able to overcome these issues is crucial to the therapeutic action of PDT. Among the others, nanostructured Zinc Oxide (ZnO) has been recently proposed as new therapeutic agent and PS thanks to its semiconducting properties, biocompatible features, and ease of functionalization [1]. Nevertheless, further efforts are needed in order to improve its colloidal stability in biological media and to unravel the effective therapeutic mechanism. Here, we propose the synthesis and characterization of lipid-coated ZnO nanoparticles as new photosensitizer for cancer PDT [2]. First, by Dynamic Light Scattering (DLS) experiments, we show that the lipid-coating increases the colloidal stability of the ZnO NPs in Phosphate buffered saline (PBS). Then, using Electron Paramagnetic Resonance (EPR) coupled with the spin-trapping technique, we demonstrate and characterize the ability of bare and lipid-coated ZnO NPs to generate Reactive Oxygen Species (ROS) in water only when remotely actuated via light irradiation. Interestingly, our results aware that the surface chemistry of the NPs greatly influence the type of photo-generated ROS. Finally, we show that our NPs are effectively internalized inside human epithelial carcinoma cells (HeLa) via a lysosomal pathway and that they are able to generate ROS inside cancer cells. [1] B. Dumontel, M. Canta, H. Engelke, A. Chiodoni, L. Racca, A. Ancona, T. Limongi, G. Canavese and V. Cauda, ‎J. Mater. Chem. B. under revision. [2] A. Ancona, H. Engelke, N. Garino, B. Dumontel, W.Fazzini and V. Cauda, to be submitted. The support from ERC Starting Grant – Project N. 678151 “Trojananohorse” is gratefully acknowledged

    Endovascular stenting of the ascending aorta for type A aortic dissections in patients at high risk for open surgery

    Get PDF
    Background: Open repair is the gold standard for type A aortic dissection (TAAD). Endovascular option has been proposed in very limited and selected TAAD patients. We report our experience with endovascular TAAD repair. Methods: Inclusion criteria were: (1) entry tear in the ascending aorta; (2) proximal landing zone of at least 2 cm; (3) distance between entry tear and brachio-cephalic trunk of at least 0.5 cm; (4) no signs of cardiac tamponade or severe aortic regurgitation and (5) no signs of aortic branches ischaemia. Patients with cardiac revascularisation from ascending aorta were excluded. Results: From April 2009 to June 2012, 37 patients with TAAD were admitted to our hospital. As many as 28 underwent surgical repair and 9 were considered at high surgical risk in a multidisciplinary meeting. Four met our inclusion criteria for an endovascular approach. Two of them had previous ascending aortic repair for TAAD and one had aortic valve replacement. Technical success was achieved in 100% of the patients. No mortality was registered during a median follow-up of 15 months (range 4-39 months), no migration of the graft and complete false lumen thrombosis of the ascending aorta in three patients. Conclusion: Endovascular treatment of TAAD is challenging but feasible in a selected subset of patients. Further research remains mandatory. © 2013 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved

    In-situ Analysis of Laminated Composite Materials by X-ray Micro-Computed Tomography and Digital Volume Correlation

    Get PDF
    The complex mechanical behaviour of composite materials, due to internal heterogeneity and multi-layered composition impose deeper studies. This paper presents an experimental investigation technique to perform volume kinematic measurements in composite materials. The association of X-ray micro-computed tomography acquisitions and Digital Volume Correlation (DVC) technique allows the measurement of displacements and deformations in the whole volume of composite specimen. To elaborate the latter, composite fibres and epoxy resin are associated with metallic particles to create contrast during X-ray acquisition. A specific in situ loading device is presented for three-point bending tests, which enables the visualization of transverse shear effects in composite structures

    Detecting myocardial salvage after primary PTCA: early myocardial contrast echocardiography versus delayed Sestamibi perfusion imaging.

    Get PDF

    Acoustic Emission from crumpling paper

    Full text link
    From magnetic systems to the crust of the earth, many physical systems that exibit a multiplicty of metastable states emit pulses with a broad power law distribution in energy. Digital audio recordings reveal that paper being crumpled, a system that can be easily held in hand, is such a system. Crumpling paper both using the traditional hand method and a novel cylindrical geometry uncovered a power law distribution of pulse energies spanning at least two decades: (exponent 1.3 - 1.6) Crumpling initally flat sheets into a compact ball (strong crumpling), we found little or no evidence that the energy distribution varied systematically over time or the size of the sheet. When we applied repetitive small deformations (weak crumpling) to sheets which had been previously folded along a regular grid, we found no systematic dependence on the grid spacing. Our results suggest that the pulse energy depends only weakly on the size of the paper regions responsible for sound production.Comment: 12 pages of text, 9 figures, submitted to Phys. Rev. E, additional information availible at http://www.msc.cornell.edu/~houle/crumpling

    Failure Processes in Elastic Fiber Bundles

    Full text link
    The fiber bundle model describes a collection of elastic fibers under load. the fibers fail successively and for each failure, the load distribution among the surviving fibers change. Even though very simple, the model captures the essentials of failure processes in a large number of materials and settings. We present here a review of fiber bundle model with different load redistribution mechanism from the point of view of statistics and statistical physics rather than materials science, with a focus on concepts such as criticality, universality and fluctuations. We discuss the fiber bundle model as a tool for understanding phenomena such as creep, and fatigue, how it is used to describe the behavior of fiber reinforced composites as well as modelling e.g. network failure, traffic jams and earthquake dynamics.Comment: This article has been Editorially approved for publication in Reviews of Modern Physic
    corecore