11 research outputs found
Student engagement in online and blended learning in a higher education institution in the Middle East: Challenges and solutions
This paper aims to identify challenges to students’ engagement in online learning at the Qatar branch campus of America’s Georgetown University, and to propose solutions. Specifically, it: 1) identifies challenges and solutions from students’ perspectives; 2) provides recommendations for developing instructional policies to maximise student engagement in synchronous learning contexts; and 3) aims to contribute to the literature on the engagement of Arabic as a Foreign Language (AFL) learners and Arabic Heritage Learners (AHLs) in online learning in higher education (HE) in the Middle East. It did so by collecting qualitative data, using an open-ended questionnaire from 13 Arabic as a Foreign Language and Arab Heritage learners. We investigate these learners’ perceptions and experiences of student engagement in online learning within the social presence dimension of the Community of Inquiry (CoI) framework. In addition to presenting a set of challenges that our students experienced in their online learning, especially under the unprecedented health, social and mental constraints created by Covid-19, we highlight their solutions to these challenges. We conclude by offering a set of recommendations that we hope AFL and Arabic Heritage (AH) programmes and institutions will find useful
THE CONCEPT OF THE SYARIAH HOTEL IMPLEMENTATION IN THE COTTAGE OF THE WOOD SYARIAH LEMBANG
Lately the development of business with a religious background, namely Islam is becoming more and more prevalent. In addition to banking, insurance, education and others, the concept of sharia was also born in the hotel world. On the one hand the emergence of Islamic hotels in the country deserves thumbs up. Sharia hotel brands as with other sharia products, although perhaps their market share is more specific and highly segmented, it is very possible that in the near future it will be a product that is needed by everyone, not just for the Islamic minority. In addition to hotels, sharia villas and cottages are now also appearing in the city of Bandung, one of which is in the lembang area, namely sharia wooden house cottages. What distinguishes between ordinary cottages with cottages that apply Islamic principles, then whether the existing facilities are still the same as ordinary cottages
Como montar e usar o clorador de pastilhas em residências rurais: cartilhas elaboradas conforme a metodologia e-Rural.
A água é uma substância de vários usos e essencial à vida. A falta de água potável pode colocar em risco a saúde das pessoas. Segundo a FAO, mais da metade dos leitos dos hospitais do mundo são ocupados por pessoas que ficaram doentes por consumir água inadequada para a saúde. Esta realidade exige esforços públicos e de cada indivíduo para aumentar a disponibilidade, melhorar o acesso e o uso de água de melhor qualidade. É neste sentido que o clorador de pastilhas será mostrado. É uma opção simples e barata para ser usada em residências rurais e em pequenos estabelecimentos que manipulam alimentos. O objetivo do clorador é tratar com cloro a água encanada que chega a estes locais e, assim, garantir uma água apropriada ao uso e consumo.bitstream/item/149089/1/5-Clorador-final.epubEbook no formato epub, convertido do livro impresso
Como montar e usar a fossa séptica modelo Embrapa: cartilhas adaptadas ao letramento do produtor.
CARTILHA: A fossa séptica modelo Embrapa é um sistema simples desenvolvido para tratar o esgoto dos banheiros de residências rurais com até sete pessoas. Com esta fossa o esgoto é lançado dentro de um conjunto de três caixas d?água ligadas uma a outra e não no solo, córrego ou rio, prática comumente observada em vários locais do País. Ao entrar neste conjunto de caixas d?água, o esgoto é tratado pelo processo de biodigestão que reduz muito a carga de agentes biológicos perigosos para a saúde humana. À medida que vários moradores rurais utilizarem fossas sépticas, espera-se reduzir a poluição do solo, córregos e rios. A natureza também ganha com a melhoria da qualidade do solo e água. Por isso, a fossa séptica é um instrumento de saúde pública e de melhoria da qualidade de vida no campo.bitstream/item/116734/1/Cnpgl-2014-Cartilha-Fossa-Septica-completa.pd
Como montar e usar a fossa séptica modelo Embrapa: cartilhas elaboradas conforme a metodologia e-Rural.
E-BOOK: A fossa séptica modelo Embrapa é um sistema simples desenvolvido para tratar o esgoto dos banheiros de residências rurais com até sete pessoas. Com esta fossa o esgoto é lançado dentro de um conjunto de três caixas d?água ligadas uma a outra e não no solo, córrego ou rio, prática comumente observada em vários locais do País. Ao entrar neste conjunto de caixas d?água, o esgoto é tratado pelo processo de biodigestão que reduz muito a carga de agentes biológicos perigosos para a saúde humana. À medida que vários moradores rurais utilizarem fossas sépticas, espera-se reduzir a poluição do solo, córregos e rios. A natureza também ganha com a melhoria da qualidade do solo e água. Por isso, a fossa séptica é um instrumento de saúde pública e de melhoria da qualidade de vida no campo.bitstream/item/149090/1/4-Fossa-Septica-final.epubEbook no formato epub, convertido do livro impresso
PTPN22 R620W Polymorphism Is Not Associated with Pemphigus
International audienc
Como montar e usar o clorador de pastilhas em residências rurais: cartilhas adaptadas ao letramento do produtor.
CARTILHA: A água é uma substância de vários usos e essencial à vida. A falta de água potável pode colocar em risco a saúde das pessoas. Segundo a FAO, mais da metade dos leitos dos hospitais do mundo são ocupados por pessoas que ficaram doentes por consumir água inadequada para a saúde. Esta realidade exige esforços públicos e de cada indivíduo para aumentar a disponibilidade, melhorar o acesso e o uso de água de melhor qualidade. É neste sentido que o clorador de pastilhas será mostrado. É uma opção simples e barata para ser usada em residências rurais e em pequenos estabelecimentos que manipulam alimentos. O objetivo do clorador é tratar com cloro a água encanada que chega a estes locais e, assim, garantir uma água apropriada ao uso e consumo
Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits
[EN] The fruit of wild melons is very small (20-50 g) without edible pulp, contrasting with the large size and high pulp content of cultivated melon fruits. An analysis of quantitative trait loci (QTL) controlling fruit morphology domestication-related traits was carried out using an in vitro maintained F-2 population from the cross between the Indian wild melon "Trigonus" and the western elite cultivar 'Piel de Sapo'. Twenty-seven QTL were identified in at least two out of the three field trials. Six of them were also being detected in BC1 and BC3 populations derived from the same cross. Ten of them were related to fruit morphological traits, 12 to fruit size characters, and 5 to pulp content. The Trigonus alleles decreased the value of the characters, except for the QTL at andromonoecious gene at linkage group (LG) II, and the QTL for pulp content at LGV. QTL genotypes accounted for a considerable degree of the total phenotypic variation, reaching up to 46%. Around 66% of the QTL showed additive gene action, 19% exhibited dominance, and 25% consisted of overdominance. The regions on LGIV, VI, and VIII included the QTL with more consistent and strong effects on domestication-related traits. QTLs on those regions were validated in BC2S1, BC2S2, and BC3 families, with "Trigonus" allele decreasing the fruit morphological traits in all cases. The validated QTL could represent loci involved in melon domestication, although further experiments as genomic variation studies across wild and cultivated genotypes would be necessary to confirm this hypothesis.We thank S. Casal, A. Mercader, and M. Mohamed-Amit for technical support and D. L. Goodchild for reviewing the English language. This work was supported by the Spanish Ministry of Economy and Competitiveness/FEDER grants AGL2012-40130-C02-02, AGL2015-64625-C2-2-R to AJM, AGL2014-53398-C2-2-R to BP, AGL2015-64625-C2-1-R, Centro de Excelencia Severo Ochoa 2016-2020, and the CERCA Programme/Generalitat de Catalunya to JGM and AMMM-H. AD was supported by a JAE-Doc contract from CSIC.Diaz, A.; Martin Hernandez, A.; Dolcet-Sanjuan, R.; Garcés Claver, AB.; Alvarez, J.; Garcia-Mas, J.; Picó Sirvent, MB.... (2017). Quantitative trait loci analysis of melon (Cucumis melo L.) domestication-related traits. Theoretical and Applied Genetics. 130(9):1837-1856. https://doi.org/10.1007/s00122-017-2928-yS183718561309Ashrafi H, Kinkade MP, Merk HL, Foolad MR (2012) Identification of novel quantitative trait loci for increased lycopene content and other fruit quality traits in a tomato recombinant inbred line population. Mol Breed 30:549–567Asins MJ, Breto MP, Carbonell EA (1993) Salt tolerance in Lycopersicon species. II. Genetic effects and a search for associated traits. Theor Appl Genet 86:769–774Boualem A, Fergany M, Fernandez R, Troadec C, Martin A, Morin H, Sari MA, Collin F, Flowers JM, Pitrat M, Purugganan MD, Dogimont C, Bendahmane A (2008) A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836–838Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in and other plant species. Plant Phys 141:15–25Capel C, Fernández del Carmen A, Alba JM, Lima-Silva V, Hernández-Gras F, Salinas M, Boronat A, Angosto T, Botella MA, Fernández R, Granell A, Capel J, Lozano R (2015) Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. Theor Appl Genet 128:2019–2203Cohen S, Itkin M, Yeselson Y, Tzuri G, Portnoy V, Harel-Baja R, Lev S, Sa’ar U, Davidovitz-Rikanati R, Baranes N, Bar E, Wolf D, Petreikov M, Shen S, Ben-Dor S, Rogachev I, Aharoni A, Ast T, Schuldiner M, Belausov E, Eshed R, Ophir R, Sherman A, Frei B, Neuhaus HE, Xu Y, Fei Z, Giovannoni J, Lewinsohn E, Tadmor Y, Paris HS, Katzir N, Burger Y, Schaffer AA (2014) The PH gene determines fruit acidity and contributed to the evolution of sweet melons. Nat Commun 5:4026Deleu W, Esteras C, Roig C, Gonzalez-To M, Fernandez-Silva I, Gonzalez-Ibeas D, Blanca J, Aranda MA, Arus P, Nuez F, Monforte AJ, Pico MB, Garcia-Mas J (2009) A set of EST-SNPs for map saturation and cultivar identification in melon. BMC Plant Biol 9:90Dhillon NPS, Ranjana R, Singh K, Eduardo I, Monforte AJ, Pitrat M, Dhillon NK, Singh PP (2007) Diversity among landraces of Indian snapmelon (Cucumis melo var. momordica). Genet Res Crop Evol 54:1267–1283Díaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei Z, Staub JE, Zalapa JE, Cuevas HE, Dace G, Oliver M, Boissot N, Dogimont C, Pitrat M, Hofstede R, van Koert Harel-Beja R, Tzuri G, Portnoy V, Cohen S, Schaffer A, Katzir N, Xu Y, Zhang H, Fukino N, Matsumoto S, Garcia-Mas J, Monforte AJ (2011) A consensus linkage map for molecular markers and quantitative trait loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111Díaz A, Zarouri B, Fergany M, Eduardo I, Álvarez JM, Picó B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into ‘Piel de Sapo’ melon (Cucumis melo L.). PLoS One 9:e104188Díaz A, Forment J, Argyris JM, Fukino N, Tzuri G, Harel-Beja R, Katzir N, Garcia-Mas J, Monforte AJ (2015) Anchoring the consensus ICuGI genetic map to the melon (Cucumis melo L.) genome. Mol Breed 35:188Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321Doligez A, Bertrand Y, Farnos M, Grolier M, Romieu C, Esnault F, Dias S, Berger G, Francois P, Pons T, Ortigosa P, Roux C, Houel C, Laucou V, Bacilieri R, Peros JP (2013) New stable QTLs for berry weight do not colocalize with QTLs for seed traits in cultivated grapevine (Vitis vinifera L.). BMC Plant Biol 13:217Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Eduardo I, Arús P, Monforte AJ, Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Álvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80–89Esteras C, Formisano G, Roig C, Díaz A, Blanca J, García-Mas J, Gómez-Gillamón ML, López-Sesse A, Lázaro A, Monforte A, Pico B (2013) SNP genotyping in melons: genetic variation, population structure and linkage disequilibrium. Theor Appl Genet 126:1285–1303FAO (2017) Statistics Division of Food and Agriculture Organization of the United Nations (FAOSTAT). http://faostat.fao.org/ . Accessed 30 May 2017Fazza AC, Dallagnol LJ, Fazza AC, Monteiro CC, Lima BM, Wassano DT, Camargo LEA (2013) Mapping of resistance genes to races 1, 3 and 5 of Podosphaera xanthii in melon PI 414723. Crop Breed Appl Biot 13:349–355Fernandez-Silva I, Moreno E, Eduardo I, Arús P, Álvarez JM, Monforte AJ (2009) On the genetic control of heterosis for fruit shape in melon (Cucumis melo L.). J Hered 100:229–235Fernandez-Silva I, Moreno E, Essafi A, Fergany M, Garcia-Mas J, Martín Hernández AM, Álvarez JM, Monforte AJ (2010) Shaping melons: agronomic and genetic characterization of QTLs that modify melon fruit morphology. Theor Appl Genet 121:931–940Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu JP, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88Garcia-Mas J, Monforte AJ, Arús P (2004) Phylogenetic relationships among Cucumis species based on the ribosomal internal transcribed spacer sequence and microsatellite. Plant Syst Evol 248:191–203Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, Gonzalez VM, Henaff E, Camara F, Cozzuto L, Lowy E, Alioto T, Capella-Gutierrez S, Blanca J, Canizares J, Ziarsolo P, Gonzalez-Ibeas D, Rodriguez-Moreno L, Droege M, Du L, Alvarez-Tejado M, Lorente-Galdos B, Mele M, Yang L, Weng Y, Navarro A, Marques-Bonet T, Aranda MA, Nuez F, Pico B, Gabaldon T, Roma G, Guigo R, Casacuberta JM, Arus P, Puigdomenech P (2012) The genome of melon (Cucumis melo L.). Proc Nat Acad Sci 109(29):11872–11877Gonzalo MJ, Claveria E, Mofnorte AJ, Dolcet-Sanjuan R (2011) Parthenogenic haploids in melon: generation and molecular characterization of a doubled haploid line population. J Am Soc Hort Sci 136:145–154Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, Libhaber SE, Avisar E, Melame T, van Koert P, Verbakel H, Hofstede R, Volpin H, Oliver M, Fougedoire A, Stalh C, Fauve J, Copes B, Fei Z, Giovannoni J, Ori N, Lewinsohn E, Sherman A, Burger J, Tadmor Y, Schaffer AA, Katzir N (2010) A genetic map of melon highly enriched with fruit quality QTL and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511–533Kenigsbuch D, Cohen Y (1990) The inheritance of gynoecy in muskmelon. Genome 33:317–320Kirkbride JH Jr. (1993) Biosystematic monograph of the genus Cucumis (Cucurbitaceae). Parkway, BooneKosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199Leida C, Moser C, Esteras C, Sulpice R, Lunn JE, de Langen F, Monforte AJ, Pico B (2015) Variability of candidate genes, genetic structure and association with sugar accumulation and climacteric behavior in a broad germplasm collection of melon (Cucumis melo L.). BMC Genet 16:28Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruited wild species Lycopersicon pimpinellifolium and L. esculentum var. Giant Heirloom. Genetics 158:413–422Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306Meyer RS, Purugganan MD (2013) Evolution of crop species: genetics of domestication and diversification. Nat Rev Genet 14:840–852Monforte AJ, Asins MJ, Carbonell EA (1997) Salt tolerance in Lycopersicon species VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713Monforte AJ, Eduardo I, Abad S, Arús P (2005) Inheritance mode of fruit traits in melon: heterosis for fruit shape and its correlation with genetic distance. Euphytica 144:31–38Monforte AJ, Díaz A, Caño Delgado A, van der Knaap E (2014) The genetic basis of fruit morphology in horticultural crops: lessons from tomato and melon. J Exp Bot 65:4625–4637Muños S, Ranc N, Botton E, Bérard A, Rolland S, Duffé P, Carretero Y, Le Paslier MC, Delalande C, Bouzayen Brunel D, Causse M (2011) Increase in tomato locule number is controlled by two SNPs located near WUSCHEL. Plant Physiol 156:2244–2254Nerson H, Paris HS (2000) Relationship between fruit size and seed size in cucurbits. Cucurbit Genet Coop Rept 23:64–67Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Eduardo I, Arús P, Monforte AJ (2008) Identification of melon fruit quality quantitative trait loci using near-isogenic lines. J Am Soc Hortic Sci 133:139–151Olsen KM, Wendel JF (2013) A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol 64:47–70Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic × elite US Western Shipping germplasm. Mol Breed 22:405–419Périn C, Hagen LS, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genom 266:933–941Perpiñá G, Esteras C, Gibon Y, Monforte AJ, Picó B (2016) A new genomic library of melon introgression lines in a cantaloupe genetic background for dissecting desirable agronomical traits. BMC Plant Biol 16:154Pitrat M (2012) Domestication and diversification of melon. In: Sari N, Solmaz I, Aras V (eds) Cucurbitaceae 2012, Proceedings of Xth Eucarpia meeting, Antaley (Turkey), pp 31–39Pitrat M (2013) Phenotypic diversity in wild and cultivated melons (Cucumis melo). Plant Biotechnol 30:273–278Pitrat M (2017) Melon genetic resources: phenotypic diversity and horticultural taxonomy. In: Grumet R, Katzir N, Garcia-Mas J (eds) Genetics and genomics of the Cucurbitaceae. Springer, New York. doi: 10.1007/7397_2017_1Qi J, Liu X, Shen D, Miao H, Xie B, Li X, Zeng P, Wang S, Shang Y, Gu X, Du Y, Li Y, Lin T, Yuan J, Yang X, Chen J, Chen H, Xiong X, Huang K, Fei Z, Mao L, Tian L, Städler T, Renner SS, Kamoun S, Lucas WJ, Zhang Z, Huang S (2013) A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nat Genet 45:1510–1515Ramamurthy RK, Waters BM (2015) Identification of fruit quality and morphology QTLs in melon (Cucumis melo) using a population derived from flexuosus and cantalupensis botanical groups. Euphytica 204:163–177Roy A, Bal SS, Fergany M, Kaur S, Singh H, Malik AA, Singh J, Monforte AJ, Dhillon NPS (2012) Wild melon diversity in India (Punjab State). Genet Resour Crop Evol 59:755–767Sabato D, Esteras C, Grillo O, Pico B, Bacchetta G (2015) Seeds morpho-colourimetric analysis as complementary method to molecular characterization of melon diversity. Sci Hortic-Amsterdam 192:441–452Sebastian P, Schaefer H, Telford IRH, Renner SS (2010) Cucumber (Cucumis sativus) and melon (C. melo) have numerous wild relatives in Asia and Australia, and the sister species of melon is from Australia. Proc Natl Acad Sci USA 107:14269–14273Soller M, Brody T (1976) On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor Appl Genet 47:35–39Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203Voorrips RE (2002) MapChart software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78Wang S, Basten CJ, Zeng ZB (2007) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, RaleighYang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723Zalapa JE, Staub JE, McCreight JD, Chung SM, Cuevas H (2007) Detection of QTL for yield-related traits using recombinant inbred lines derived from exotic and elite US Western Shipping melon germplasm. Theor Appl Genet 114:1185–1201Zeng ZB (1993) Theoretical basis of separation of multiple linked gene effects on mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–1097