109 research outputs found

    Investigating GLUT4 Trafficking in Muscle

    Get PDF
    GLUT4 trafficking in muscle cells has been studied to determine how distinct signalling pathways induce GLUT4 translocation. Two different cell models were adopted for these investigations; cardiomyocytes isolated from a transgenic mouse line expressing HA-GLUT4-GFP in muscle and L6 myotubes retrovirally expressing HA-GLUT4. The GLUT4 constructs were largely excluded from the external membrane under basal conditions in both cell models. GLUT4 was trafficked to the external membrane in to response all stimuli studied in cardiomyocytes (insulin, contraction and hypoxia) and L6 myotubes (insulin, AICAR and A-769662). By comparing the anti-HA and GFP signals at the sarcolemma and transverse tubules in cardiomyocytes, it has also be possible to observe an enhancement of GSV fusion with the sarcolemma following stimulation with insulin and contraction. This effect was specific to these stimuli and to the sarcolemma. Insulin-stimulation of GLUT4 exocytosis was not detected under steady-state conditions in L6 myotubes. Here, the major effect of insulin-stimulation and AMPK-activation was on GLUT4 internalisation. The rate constant for GLUT4 internalisation was very rapid in basal cells and was decreased during the steady-state responses to insulin and the AMPK-activators AICAR and A-769662. In cardiomyocytes, internalising GLUT4 colocalised with clathrin at puncta at the sarcolemma. This indicates that GLUT4 is internalised via a clathrin-mediated route. Investigations into the amount of GLUT4 recycling in L6 cells under steady-state conditions revealed that a large proportion of cellular GLUT4 recycles with the cell surface under basal conditions. Insulin-stimulation and AMPK-activation additively mobilised GLUT4 in L6 cells. This implies a non-convergent mobilisation of GLUT4 in response to activation of the PKB/Akt and AMPK signalling pathways. Data obtained from an in vitro kinase assay confirmed that serine 237 of TBC1D1 is a bone fide AMPK phosphorylation site. Furthermore, phosphorylation of this site in L6 myotubes incubated with AMPK activators has been confirmed using a novel antibody specific to TBC1D1 phosphorylated at serine 237. This thesis discusses the consequences and importance of multiple controls impinging on GLUT4 traffic and highlights the advantages and limitations of kinetic studies of these processes.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP-activated protein kinase activators in L6 myotubes.

    Get PDF
    In L6 myotubes, redistribution of a hemagglutinin (HA) epitope-tagged GLUT4 (HA-GLUT4) to the cell surface occurs rapidly in response to insulin stimulation and AMP-activated protein kinase (AMPK) activation. We have examined whether these separate signaling pathways have a convergent mechanism that leads to GLUT4 mobilization and to changes in GLUT4 recycling. HA antibody uptake on GLUT4 in the basal steady state reached a final equilibrium level that was only 81% of the insulin-stimulated level. AMPK activators (5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) and A-769662) led to a similar level of antibody uptake to that found in insulin-stimulated cells. However, the combined responses to insulin stimulation and AMPK activation led to an antibody uptake level of approximately 20% above the insulin level. Increases in antibody uptake due to insulin, but not AICAR or A-769662, treatment were reduced by both wortmannin and Akt inhibitor. The GLUT4 internalization rate constant in the basal steady state was very rapid (0.43 min(-1)) and was decreased during the steady-state responses to insulin (0.18 min(-1)), AICAR (0.16 min(-1)), and A-769662 (0.24 min(-1)). This study has revealed a nonconvergent mobilization of GLUT4 in response to activation of Akt and AMPK signaling. Furthermore, GLUT4 trafficking in L6 muscle cells is very reliant on regulated endocytosis for control of cell surface GLUT4 levels

    Insulin regulates Rab3-Noc2 complex dissociation to promote GLUT4 translocation in rat adipocytes.

    Get PDF
    AIMS/HYPOTHESIS: The glucose transporter GLUT4 is present mainly in insulin-responsive tissues of fat, heart and skeletal muscle and is translocated from intracellular membrane compartments to the plasma membrane (PM) upon insulin stimulation. The transit of GLUT4 to the PM is known to be dependent on a series of Rab proteins. However, the extent to which the activity of these Rabs is regulated by the action of insulin action is still unknown. We sought to identify insulin-activated Rab proteins and Rab effectors that facilitate GLUT4 translocation. METHODS: We developed a new photoaffinity reagent (Bio-ATB-GTP) that allows GTP-binding proteomes to be explored. Using this approach we screened for insulin-responsive GTP loading of Rabs in primary rat adipocytes. RESULTS: We identified Rab3B as a new candidate insulin-stimulated G-protein in adipocytes. Using constitutively active and dominant negative mutants and Rab3 knockdown we provide evidence that Rab3 isoforms are key regulators of GLUT4 translocation in adipocytes. Insulin-stimulated Rab3 GTP binding is associated with disruption of the interaction between Rab3 and its negative effector Noc2. Disruption of the Rab3-Noc2 complex leads to displacement of Noc2 from the PM. This relieves the inhibitory effect of Noc2, facilitating GLUT4 translocation. CONCLUSIONS/INTERPRETATION: The discovery of the involvement of Rab3 and Noc2 in an insulin-regulated step in GLUT4 translocation suggests that the control of this translocation process is unexpectedly similar to regulated secretion and particularly pancreatic insulin-vesicle release

    Unraveling Kinase Activation Dynamics Using Kinase-Substrate Relationships from Temporal Large-Scale Phosphoproteomics Studies.

    Get PDF
    In response to stimuli, biological processes are tightly controlled by dynamic cellular signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (milliseconds to seconds), making it an ideal carrier of these signals. Advances in mass spectrometry-based proteomics have led to the identification of many tens of thousands of phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying network topology of signaling networks therefore remains obscured. Identifying kinase substrate relationships (KSRs) is therefore an important goal in cell signaling research. Existing consensus sequence motif based prediction algorithms do not consider the biological context of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-substrate recognition in cellular contexts. Here, we use temporal information to identify biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-dependent and automated fashion. First, we used available phosphorylation databases to construct a repository of existing experimentally-predicted KSRs. For each kinase in this database, we used time-resolved phosphoproteomics data to examine how its substrates changed in phosphorylation over time. Although substrates for a particular kinase clustered together, they often exhibited a different temporal pattern to the phosphorylation of the kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biological context. Moreover, KSR-LIVE can also be used to automatically generate positive training sets for the subsequent prediction of novel KSRs using machine learning approaches. We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases that share the same linear consensus motif, and provide evidence suggesting IRS-1 S265 as a novel Akt site. KSR-LIVE is an open-access algorithm that allows users to dissect phosphorylation signaling within a specific biological context, with the potential to be included in the standard analysis workflow for studying temporal high-throughput signal transduction data

    A Quasi-linear Diffusion Model for Resonant Wave–Particle Instability in Homogeneous Plasma

    Get PDF
    In this paper, we develop a model to describe the generalized wave-particle instability in a quasi-neutral plasma. We analyze the quasi-linear diffusion equation for particles by expressing an arbitrary unstable and resonant wave mode as a Gaussian wave packet, allowing for an arbitrary direction of propagation with respect to the background magnetic field. We show that the localized energy density of the Gaussian wave packet determines the velocity-space range in which the dominant wave-particle instability and counteracting damping contributions are effective. Moreover, we derive a relation describing the diffusive trajectories of resonant particles in velocity space under the action of such an interplay between the wave-particle instability and damping. For the numerical computation of our theoretical model, we develop a mathematical approach based on the Crank-Nicolson scheme to solve the full quasi-linear diffusion equation. Our numerical analysis solves the time evolution of the velocity distribution function under the action of a dominant wave-particle instability and counteracting damping and shows a good agreement with our theoretical description. As an application, we use our model to study the oblique fast-magnetosonic/whistler instability, which is proposed as a scattering mechanism for strahl electrons in the solar wind. In addition, we numerically solve the full Fokker-Planck equation to compute the time evolution of the electron-strahl distribution function under the action of Coulomb collisions with core electrons and protons after the collisionless action of the oblique fast-magnetosonic/whistler instability

    Bilirubin deficiency renders mice susceptible to hepatic steatosis in the absence of insulin resistance.

    Get PDF
    BACKGROUND & AIMS: Plasma concentrations of bilirubin, a product of heme catabolism formed by biliverdin reductase A (BVRA), inversely associate with the risk of metabolic diseases including hepatic steatosis and diabetes mellitus in humans. Bilirubin has antioxidant and anti-inflammatory activities and may also regulate insulin signaling and peroxisome proliferator-activated receptor alpha (PPARα) activity. However, a causal link between bilirubin and metabolic diseases remains to be established. Here, we used the global Bvra gene knockout (Bvra-/-) mouse as a model of deficiency in bilirubin to assess its role in metabolic diseases. APPROACH & RESULTS: We fed mice fat-rich diets to induce hepatic steatosis and insulin resistance. Bile pigments were measured by LC-MS/MS, and hepatic lipids by LC-MS/MS (non-targeted lipidomics), HPLC-UV and Oil-Red-O staining. Oxidative stress was evaluated measuring F2-isoprostanes by GC-MS. Glucose metabolism and insulin sensitivity were verified by glucose and insulin tolerance tests, ex vivo and in vivo glucose uptake, and Western blotting for insulin signaling. Compared with wild type littermates, Bvra-/- mice contained negligible bilirubin in plasma and liver, and they had comparable glucose metabolism and insulin sensitivity. However, Bvra-/- mice exhibited an inflamed and fatty liver phenotype, accompanied by hepatic accumulation of oxidized triacylglycerols and F2-isoprostanes, in association with depletion of α-tocopherol. α-Tocopherol supplementation reversed the hepatic phenotype and observed biochemical changes in Bvra-/- mice. CONCLUSIONS: Our data suggests that BVRA deficiency renders mice susceptible to oxidative stress-induced hepatic steatosis in the absence of insulin resistance

    The role of the Niemann-Pick disease, type C1 protein in adipocyte insulin action.

    Get PDF
    The Niemann-Pick disease, type C1 (NPC1) gene encodes a transmembrane protein involved in cholesterol efflux from the lysosome. SNPs within NPC1 have been associated with obesity and type 2 diabetes, and mice heterozygous or null for NPC1 are insulin resistant. However, the molecular mechanism underpinning this association is currently undefined. This study aimed to investigate the effects of inhibiting NPC1 function on insulin action in adipocytes. Both pharmacological and genetic inhibition of NPC1 impaired insulin action. This impairment was evident at the level of insulin signalling and insulin-mediated glucose transport in the short term and decreased GLUT4 expression due to reduced liver X receptor (LXR) transcriptional activity in the long-term. These data show that cholesterol homeostasis through NPC1 plays a crucial role in maintaining insulin action at multiple levels in adipocytes

    Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity.

    Get PDF
    A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity

    Insulin Tolerance Test under Anaesthesia to Measure Tissue-specific Insulin-stimulated Glucose Disposal.

    Get PDF
    Insulin resistance is a pathophysiological state defined by impaired responses to insulin and is a risk factor for several metabolic diseases, most notably type 2 diabetes. Insulin resistance occurs in insulin target tissues including liver, adipose and skeletal muscle. Methods such as insulin tolerance tests and hyperinsulinaemic-euglycaemic clamps permit assessment of insulin responses in specific tissues and allow the study of the progression and causes of insulin resistance. Here we detail a protocol for assessing insulin action in adipose and muscle tissues in anesthetized mice administered with insulin intravenously
    • …
    corecore