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Abstract
In this paper, we develop a model to describe the generalized wave-particle instability in a quasi-

neutral plasma. We analyze the quasi-linear diffusion equation for particles by expressing an arbitrary
unstable and resonant wave mode as a Gaussian wave packet, allowing for an arbitrary direction of
propagation with respect to the background magnetic field. We show that the localized energy density
of the Gaussian wave packet determines the velocity-space range in which the dominant wave-particle
instability and counter-acting damping contributions are effective. Moreover, we derive a relation
describing the diffusive trajectories of resonant particles in velocity space under the action of such
an interplay between the wave-particle instability and damping. For the numerical computation of
our theoretical model, we develop a mathematical approach based on the Crank-Nicolson scheme to
solve the full quasi-linear diffusion equation. Our numerical analysis solves the time evolution of the
velocity distribution function under the action of a dominant wave-particle instability and counter-
acting damping, and shows a good agreement with our theoretical description. As an application,
we use our model to study the oblique fast-magnetosonic/whistler instability, which is proposed as
a scattering mechanism for strahl electrons in the solar wind. In addition, we numerically solve the
full Fokker-Planck equation to compute the time evolution of the electron-strahl distribution function
under the action of Coulomb collisions with core electrons and protons after the collisionless action of
the oblique fast-magnetosonic/whistler instability.

Keywords: methods: analytical — instabilities — waves — plasmas — diffusion

1. INTRODUCTION

Wave-particle resonances play an important role for the
energy exchange between particles and waves in many
space and astrophysical plasmas. For example, wave-
particle resonances contribute to the acceleration and
deceleration of particles in radiation belts (Ukhorskiy &
Sitnov 2014), the deviation of the particle velocity distri-
bution function (VDF) from a Maxwellian equilibrium in
the solar wind (Marsch 2006), the thermodynamic state
of the intracluster medium in galaxy clusters (Roberg-
Clark et al. 2016), and the scattering and absorption
of the surface radiation in neutron-star magnetospheres
(Lyutikov & Gavriil 2006). Therefore, it is of great impor-
tance to study the mechanics of wave-particle resonances
in order to advance our understanding of the physics of
astrophysical plasmas throughout the Universe.
According to kinetic theory, wave-particle resonances

can occur in the form of Landau or cyclotron resonances,
which contribute to wave instability or wave damping
depending on the resonance’s characteristics. The quasi-

linear theory of magnetized plasma, first established by
Yakimenko (1963) and Kennel & Engelmann (1966), pro-
vides a mathematical framework to predict the evolution
of the particle VDF under the action of the wave-particle
resonances. The quasi-linear theory assumes that the
spatially averaged VDF evolves slowly compared to the
gyroperiod of the particles and the wave period. It fur-
thermore assumes that the fluctuation amplitude is small
and that the spatial average of the fluctuations vanishes.
Based on this theory, numerous analytical studies have
successfully explained the evolution of VDFs resulting
from wave-particle resonances.
Resonant particles diffuse along specific trajectories

in velocity space determined by the properties of the
resonant wave (Kennel & Engelmann 1966; Gendrin 1968;
Gendrin & Roux 1980; Gendrin 1981; Stix 1992; Isenberg
& Lee 1996; Summers et al. 1998, 2001). Quasi-linear
diffusion coefficients determine the diffusion rate of the
resonant particles (Lyons et al. 1971; Lyons 1974; Albert
2004; Summers 2005; Glauert & Horne 2005; Isenberg
& Vasquez 2011; Tang et al. 2020). Alternatively, quasi-
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linear diffusion models based on a bi-Maxwellian VDF,
in which only its moments evolve in time, describe the
effective evolution of particle VDFs under the action
of micro-instabilities (Yoon & Seough 2012; Seough &
Yoon 2012; Yoon et al. 2015; Yoon 2017; Yoon et al.
2017). Moreover, fully non-linear simulations based on
kinetic theory model the evolution of the particle VDF
consistently with predictions from quasi-linear theory
(Vocks & Mann 2003; Vocks et al. 2005; Gary et al. 2008;
Saito et al. 2008, 2010; Saito & Peter Gary 2012).
Realistic analytical models must describe the diffusive

trajectory of the resonant particles in velocity space,
taking into account the localized (in wavevector space)
energy density of the resonant waves. These models
must also account for non-Maxwellian features in the
VDF evolution in order to advance our understanding
of plasma observations and kinetic simulation results.
A rigorous numerical analysis of the diffusion equation,
including both the diagonal and off-diagonal diffusion
terms, is necessary to support the theoretical description
through the quantification of the diffusion rates.
By analyzing the quasi-linear diffusion equation, we

propose a novel quasi-linear diffusion model for the time
evolution of VDFs under the action of a dominant wave-
particle instability and counter-acting damping contri-
butions in Section 2. Our model describes the creation
and evolution of non-Maxwellian features in the particle
VDF. We allow for an arbitrary type of the unstable and
resonant wave mode with an arbitrary direction of prop-
agation with respect to the background magnetic field.
In our analysis, we express the electric field of this wave
as a Gaussian wave packet in configuration space. The
localization of such a wave packet in configuration space
is the direct consequence of its generation through a
linear instability, which is localized in wavevector space.
To investigate the stabilization of the VDF through

quasi-linear diffusion, we apply our analysis of the quasi-
linear diffusion equation to Boltzmann’s H-theorem. In
this scheme, the localized energy density of the Gaussian
wave packet in wavevector space defines the velocity-
space range in which the dominant wave-particle in-
stability and counter-acting damping contributions are
effective. In addition, we derive a relation to describe
the diffusive trajectories of resonant particles in velocity
space under the action of such an instability and damping.
In this way, our model accounts for the diffusive behavior
of resonant particles in different regions of velocity space.
For the numerical evaluation of our theoretical de-

scription, we develop a mathematical approach based
on the Crank-Nicolson scheme (for numerical details,
see Appendix A) that solves the full quasi-linear dif-
fusion equation. Because of its reliable stability, the

Crank-Nicolson scheme has been used previously to solve
diffusion equations in a variety of fields (Khazanov et al.
2002; Albert 2004; Brügmann et al. 2004; Yang et al.
2009; Klein & Chandran 2016; Taran et al. 2019). How-
ever, most standard Crank-Nicolson schemes neglect the
off-diagonal terms in the diffusion equation. In our case,
these off-diagonal terms are important for the descrip-
tion of resonant pitch-angle scattering. We note that
our mathematical approach is applicable to all general
two-dimensional diffusion equations, including those with
off-diagonal diffusion terms.
In Section 3, as an example, we apply our model to the

scattering of the electron strahl which is a field-aligned
electron beam population in the solar wind (Pilipp et al.
1987; Štverák et al. 2009). Observations in the solar
wind suggest that strahl electrons exchange energy with
whistler waves, which ultimately leads to a scattering
of strahl electrons into the halo population (Pagel et al.
2007; Lacombe et al. 2014; Graham et al. 2017). Our
quasi-linear framework confirms that an instability of the
fast-magnetosonic/whistler wave in oblique propagation
with respect to the background magnetic field scatters
the electron strahl into the electron halo, as predicted by
linear theory (Vasko et al. 2019; Verscharen et al. 2019).
In Section 4, for a more realistic model of the strahl

evolution after the collisionless action of the oblique fast-
magnetosonic/whistler instability, we numerically solve
the full Fokker-Planck equation for Coulomb collisions
with our mathematical approach (for numerical details,
see Appendix B). We model the time evolution of the
electron-strahl VDF through the action of Coulomb col-
lisions with core electrons and protons. This combined
method allows us to compare the timescales for the strahl
scattering and collisional relaxation.
In Section 5, we discuss the results of our model for the

strahl scattering and electron-halo formation through
the instability and Coulomb collisions. In Section 6, we
summarize and conclude our treatment.

2. QUASI-LINEAR DIFFUSION MODEL

In this section, we establish our general theoretical
framework for the description of a resonant wave-particle
instability in quasi-linear theory. Since our work focuses
on non-relativistic space plasma like the solar wind, we
neglect relativistic effects throughout our study.

2.1. Analysis of Quasi-Linear Diffusion Equation

To investigate the time evolution of the particle VDF
through wave-particle resonances, we study the quasi-



3

linear diffusion equation, given by Stix (1992)(
∂fj
∂t

)
QLD

= lim
V→∞

∞∑
n=−∞

∫
πq2j
V m2

j

×Ĝ[k‖]

[
v2⊥∣∣v‖∣∣δ

(
k‖−

ωk−nΩj
v‖

)∣∣ψnj ∣∣2Ĝ[k‖]fj

]
d3k,

(1)

where

ψnj ≡
1√
2

[
ER
k e

iφJn+1(ρj) + EL
k e
−iφJn−1(ρj)

]
+
v‖

v⊥
E z
kJn(ρj),

(2)

and

Ĝ[k‖] ≡
(

1−
k‖v‖

ωk

)
1

v⊥

∂

∂v⊥
+
k‖

ωk

∂

∂v‖
. (3)

The integer n determines the order of the resonance,
where n = 0 corresponds to the Landau resonance and
n 6= 0 corresponds to cyclotron resonances. In our equa-
tions, we label contributions from a given resonance
order with a superscript n. The subscript j indicates
the particle species. The particle VDF of species j is
denoted as fj ≡ fj(v⊥, v‖, t) which is spatially averaged
and gyrotropic, qj and mj are the charge and mass of
a particle of species j, v⊥ and v‖ are the velocity coor-
dinates perpendicular and parallel with respect to the
background magnetic field. We choose the coordinate
system in which the proton bulk velocity is zero.
We denote the nth-order Bessel function as Jn(ρj)

where ρj ≡ k⊥v⊥/Ωj . The cyclotron frequency of species
j is defined as Ωj ≡ qjB0/mjc, B0 is the background
magnetic field, c is the light speed, k⊥ and k‖ are the
perpendicular and parallel components of the wavevector
k, and V is the volume in which the wave amplitude
is effective so that the wave and particles undergo a
significant interaction. We denote Dirac’s δ-function as
δ and the azimuthal angle of wavevector k as φ. The
frequency ω is a complex function of k, and we define ωk
as its real part and γk as its imaginary part (ω = ωk+iγk).
Without loss of generality, we set ωk > 0. Furthermore,
we assume that |γk| � ωk, i.e. the assumption of slow
growth or damping that is central to quasi-linear theory.
The spatially Fourier-transformed electric field has the

form of Ek = x̂Exk+ŷEyk+ẑEzk and is defined as (Gurnett
& Bhattacharjee 2017)

Ek =
1

(2π)3/2

∫
Er exp [−ik · r] d3r, (4)

where k · r = k⊥x cosφ + k⊥y sinφ + k‖z and r is the
position vector. We take the constant background mag-
netic field as B0 = ẑB0 and define the right- and left-
circularly polarized components of the electric field as

ER
k ≡ (Ex

k − iE
y
k )/
√

2 and EL
k ≡ (Ex

k + iEy
k )/
√

2. We
define the longitudinal component of the electric field as
E z
k .
Linear instabilities typically create fluctuations across

a finite range of wavevectors. The Fourier transformation
of such a wave packet in wavevector space corresponds
to a wave packet in configuration space. For the sake of
simplicity, we model this finite wave packet by assuming
that the electric field Er of the unstable and resonant
waves has the shape of a gyrotropic Gaussian wave packet

Er = E0 exp

[
−
σ2
⊥0x

2+σ2
⊥0y

2+σ2
‖0z

2

2

]
exp [ik0 · r] , (5)

where E0 = x̂Ex0 + ŷEy0 + ẑEz0 , k0 · r = k⊥0x cosφ +

k⊥0y sinφ+ k‖0z, and k0 is the wavevector of the Gaus-
sian wave packet. We allow for an arbitrary angle θ0
between k0 and B0, which defines the orientation of
the wavevector at maximum growth of the wave, and
assume that k‖0 6= 0. The vector E0 represents the peak
amplitude of the electric field. The free parameters σ⊥0
and σ‖0 characterize the width of the Gaussian envelope.
Quasi-linear theory requires that Er spatially averages
to zero. Therefore, we assume that |k‖0| � σ‖0 so that
the spatial dimension of the Gaussian wave packet is
large compared to the parallel wave length 2π/|k‖0|.
The spatial Fourier transformation of Eq. (5) according

to Eq. (4) then leads to

Ek =
E0

σ‖0σ
2
⊥0

exp

[
−

(k‖ − k‖0)2

2σ2
‖0

− (k⊥ − k⊥0)2

2σ2
⊥0

]
. (6)

We identify V with the volume of the Gaussian envelope,
V = 1/(σ‖0σ

2
⊥0). Eq. (6) represents the localization

of the wave energy density in wavevector space. For
the instability analysis through Eq. (6), we define the
unstable k-spectrum as the finite wavevector range in
which γk > 0 and argue that resonant waves exist only in
this unstable k-spectrum. We neglect any waves outside
this k-spectrum since they are damped.
We define k‖0 as the value of k‖ at the center of the

unstable k-spectrum. We then obtain

k⊥0 = k‖0 tan θ0. (7)

In the case of a linear plasma instability, we identify k⊥0
and k‖0 with the wavevector components at which the
instability has its maximum growth rate as a reasonable
approximation. To approximate the wave frequency of
the unstable waves at the angle θ0 of maximum growth,
we expand ωk of the unstable and resonant waves around
k‖0 as

ωk(k‖) ≈ ωk0 + vg0
(
k‖ − k‖0

)
, (8)



4

where
vg0 ≡

∂ωk
∂k‖

∣∣∣∣
k‖=k‖0

. (9)

In Eqs. (8) and (9), ωk0 and vg0 are the wave frequency
and parallel group velocity of the unstable and resonant
waves, evaluated at k‖ = k‖0. We select the values of
σ⊥0 and σ‖0 as the half widths of the perpendicular
and parallel unstable k-spectrum. In the case of a linear
plasma instability, the numerical values for k⊥0, k‖0, σ⊥0,
σ‖0, ωk0 and vg0 can be found from the solutions of the
hot-plasma dispersion relation, which thus closes our set
of equations.
By using Eq. (6) and Eq. (8), we rewrite Eq. (1) as(
∂fj
∂t

)
QLD

=

∞∑
n=−∞

∫
Ĝ[k‖]

[
Dn
j Ĝ[k‖]fj

]
d3k, (10)

where

Dn
j ≡

πq2j v
2
⊥

σ‖0σ
2
⊥0m

2
j

δ(k‖ − kn‖j)

×
|ψnj0|2

|v‖ − vg0|
exp

[
−

(k‖−k‖0)2

σ2
‖0

− (k⊥−k⊥0)2

σ2
⊥0

]
,

(11)

ψnj0≡
1√
2

[
ER
0 e

iφJn+1(ρj) + EL
0 e
−iφJn−1(ρj)

]
+
v‖

v⊥
E z
0 Jn(ρj),

(12)

and
kn‖j ≡

ωk0 − k‖0vg0 − nΩj

v‖ − vg0
. (13)

We note that ER
0 = (Ex

0 − iE
y
0 )/
√

2 and EL
0 = (Ex

0 +

iEy
0 )/
√

2 are constant, evaluated at k0.
Eq. (10) is the quasi-linear diffusion equation describing

the action of the dominant wave-particle instability and
co-existing damping contributions from other resonances
in a Gaussian wave packet. We define the n resonance as
the contribution to the summation in Eq. (10) with only
integer n. We note that any n resonance can contribute
to wave instability or to wave damping depending on the
resonance’s characteristics.

2.2. Stabilization through a Resonant Wave-Particle
Instability

We define the stabilization as the process that cre-
ates the condition in which (∂fj/∂t)QLD → 0 for all v⊥
and v‖. For our analysis of the stabilization of a VDF
through a resonant wave-particle instability, including co-
existing damping effects, we use Boltzmann’s H-theorem,
in which the quantity H is defined as

H(t) ≡
∫
fj(v, t) ln fj(v, t)d

3v. (14)

By using Eq. (10), the time derivative of H is given by

dH

dt
=

∞∑
n=−∞

∫∫
(ln fj+1)Ĝ[k‖]

[
Dn
j Ĝ[k‖]fj

]
d3kd3v. (15)

The integrand in Eq. (15) is equivalent to

( ln fj + 1)Ĝ[k‖]
[
Dn
j Ĝ[k‖]fj

]
=

Ĝ[k‖]
[
Dn
j Ĝ[k‖](fj ln fj)

]
−Dn

j

[
Ĝ[k‖]fj

]2/
fj .

(16)

Upon substituting Eq. (16) into Eq. (15), the first term
on the right-hand side in Eq. (16) disappears after the
integration over v. Then, by resolving the δ-function in
Dn
j through the k‖-integral, we obtain

dH

dt
= −

∞∑
n=−∞

(
dH

dt

)n
, (17)

where(
dH

dt

)n
≡
∫ {

D̃n
j

[
Ĝ[kn‖j ]fj

]2/
fj

}
d3v, (18)

D̃n
j ≡Wn

j

πq2j v
2
⊥

σ‖0σ
2
⊥0m

2
j

∫ 2π

0

∫ ∞
0

|ψnj0|2

× exp

[
− (k⊥ − k⊥0)2

σ2
⊥0

]
k⊥dk⊥dφ,

(19)

Wn
j ≡

1

|v‖ − vg0|
exp

[
−
k2‖0

σ2
‖0

(
v‖ − vn‖res
v‖ − vg0

)2
]
, (20)

vn‖res ≡
ωk0 − nΩj

k‖0
, (21)

Ĝ[kn‖j ] ≡
[

nΩj
ωk0 − k‖0vg0 − nΩj

]
v‖ − vg0
vphv⊥

∂

∂v⊥

+
1

vph

∂

∂v‖
,

(22)

and

vph ≡
ωk(kn‖j)

kn‖j
=

(ωk0 − k‖0vg0)v‖ − nΩjvg0

ωk0 − k‖0vg0 − nΩj
. (23)

The function D̃n
j in Eq. (19) plays the role of a diffusion

coefficient for the n resonance. In D̃n
j , the v‖-function

Wn
j defined in Eq. (20) serves as a window function that

determines the region in v‖-space in which the quasi-
linear diffusion through the n resonance is effective. The
window function Wn

j is maximum at vn‖res defined in
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Eq. (21), which is the parallel velocity of the particles
that resonate with the waves at k‖ = k‖0 through the n
resonance. Our window function Wn

j is linked to Dirac’s
δ-function in the limit

lim
vn‖res→vg0

Wn
j ≈

√
π
σ‖0

|k‖0|
δ(v‖ − vg0), (24)

where |k‖0| � σ‖0. Due to this ordering between |k‖0|
and σ‖0, we assume that Wn

j restricts a finite region in
v‖-space and that the Wn

j for different resonances do not
overlap with each other in v‖-space.
Only particles distributed within Wn

j experience the
n resonance and contribute to the quasi-linear diffu-
sion which is ultimately responsible for the stabilization.
Since all terms in Eq. (18) are positive semi-definite,
all resonances independently stabilize fj through quasi-
linear diffusion in the v‖-range defined by their respective
Wn
j , according to Eq. (17). Therefore, H decreases and

dH/dt tends towards zero during the quasi-linear diffu-
sion through all resonances while fj is in the process of
stabilization. When fj reaches a state of full stabilization
through all n resonances, the instability has saturated
and its growth ends.
The v‖-function kn‖j defined in Eq. (13) is the resonant

parallel wavenumber, where kn‖j = k‖0 at v‖ = vn‖res. It
quantifies the k‖-component of the unstable k-spectrum
in the v‖-range defined by Wn

j . Eq. (23) defines the
phase velocity at kn‖j , which is only constant when vg0 =

ωk0/k‖0, in which case vph = vg0 for all v‖. We discuss
the diffusion operator Ĝ[kn‖j ] in Eq. (22) in the next
section.

2.3. Nature of Quasi-Linear Diffusion in Velocity Space

Considering Eq. (17), unless the wave amplitude is
zero, the condition for the achievement of stabilization
through the n resonance is

Ĝ[kn‖j ]F
n
j (v⊥, v‖) = 0, (25)

where Fnj (v⊥, v‖) represents the stabilized VDF of species
j through the n resonance. According to Eq. (25), Ĝ[kn‖j ]

is a directional derivative along the isocontour of Fnj eval-
uated at a given velocity position. Considering the role
of Wn

j , Ĝ[kn‖j ] describes only the diffusion of resonant
particles within Wn

j along the isocontour of Fnj . Conse-
quently, the particles experiencing the n resonance diffuse
toward the stable state so that (dH/dt)n → 0, while the
isocontour of Fnj describes the diffusive trajectory for the
n resonance.
To find such that trajectory, we express an infinitesimal

variation of Fnj along its isocontour as

dFnj =
∂Fnj
∂v⊥

dv⊥ +
∂Fnj
∂v‖

dv‖ = 0. (26)

Eqs. (22) and (26) allow us to rewrite Eq. (25) as

v⊥dv⊥+

[
nΩj

nΩj − ωk0 + k‖0vg0

]
(v‖ − vg0)dv‖ = 0. (27)

By integrating Eq. (27), the diffusive trajectory for the
n resonance is then defined by

v2⊥+

[
nΩj

nΩj − ωk0 + k‖0vg0

]
(v‖ − vg0)2 = const. (28)

Kennel & Engelmann (1966) treat the two limiting cases
in which vg0 = ωk0/k‖0 and vg0 = 0. Using their assump-
tions, our Eq. (28) is equivalent to their equation (4.8)
if vg0 = ωk0/k‖0, and our Eq. (28) is equivalent to their
equation (4.11) if vg0 = 0. Depending on the dispersion
properties of the resonant waves, Eq. (28) is either an
elliptic or a hyperbolic equation when n 6= 0. In the case
of electron resonances, it is safe to assume that

nΩj
nΩj − ωk0 + k‖0vg0

≥ 0, (29)

in Eq. (28) if vg0 < (ωk0 + n|Ωe|)/k‖0 for all positive n
and vg0 > (ωk0 + n|Ωe|)/k‖0 for all negative n. However,
in the case of proton resonances, resonant waves are more
likely to violate Eq. (29) since Ωp � |Ωe|.

Figure 1: The diffusive flux of resonant particles in velocity
space under the action of two arbitrary n1 and n2 resonances.
The dark shaded areas represent isocontours of the VDFs
of two particle populations. The red and dark-blue solid
curves show the diffusive trajectories, Eq. (28) with n = n1

and n = n2. Wn1
j and Wn2

j represent the window functions
according to Eq. (20), in which the n1 and n2 resonances
are effective. The light-blue dashed semi-circles correspond
to constant-energy contours. The black solid line indicates
v‖ = vg0.

Fig. 1 illustrates the diffusive flux of particles experienc-
ing two arbitrary resonances: the n1 and n2 resonances
for an unstable wave. The dark shaded areas represent
isocontours of the VDFs of two particle populations in
velocity space. The red and dark-blue solid curves rep-
resent the diffusive trajectories according to Eq. (28)
with n = n1 and n = n2, assuming that the resonant
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wave fulfills Eq. (29). The window functions Wn1
j and

Wn2
j describe the v‖-ranges in which the n1 and n2 reso-

nances are effective. The light-blue dashed semi-circles
correspond to contours of constant kinetic energy in the
proton rest frame, for which

v2⊥ + v2‖ = const. (30)

In general, the diffusive flux is always directed from
higher to lower phase-space densities during the process
of stabilization. At point A, resonant particles in Wn1

j

diffuse along the red solid curve towards smaller v‖. Con-
sidering the relative alignment between the diffusive flux
and constant-energy contour at point A, the diffusing par-
ticles lose kinetic energy. This energy is transferred to the
resonant wave, which consequently grows in amplitude.
Therefore, this situation corresponds to an instability of
the resonant wave. At point B, particles do not diffuse
along the red solid curve since this point lies outside
Wn1
j .
At point C, resonant particles in Wn2

j diffuse along the
dark-blue solid curve towards greater v‖. Considering
the relative alignment between the diffusive flux and
the constant-energy contour at point C, the diffusing
particles gain kinetic energy. This energy is taken from
the resonant wave, which consequently shrinks in ampli-
tude. Therefore, this situation corresponds to damping
of the resonant wave and counter-acts the driving of
the instability through the n1 resonance. Because the
resonant wave is unstable, the n1 resonant instability
must overcome the counter-acting n2 resonant damping.
According to Eq. (18), there are three factors that de-

termine the diffusion rate for the action of an n resonance.
The first factor is the particle density fj withinWn

j . The
second factor is D̃n

j whose magnitude is determined by
the polarization properties of the resonant waves. The
third factor is the quantity Ĝ[kn‖j ]fj/fj which defines the
relative alignment between the isocontours of fi and the
diffusive flux along the diffusive trajectory within Wn

j .
In Fig. 1, the magnitude of |Ĝ[kn1

‖j ]fj/fj | at point A is
greater than the magnitude of |Ĝ[kn2

‖j ]fj/fj | at point C.
Since the diffusive flux is directed from higher to lower

values of fj , the quantity Ĝ[kn‖j ]fj/fj resolves the am-
biguity in the directions of the trajectories for resonant
particles. A careful analysis of Ĝ[kn‖j ] with the fulfillment
of Eq. (29) shows that, if (k‖/|k‖|)(Ĝ[kn‖j ]fj/fj) > 0 at a
given resonant velocity, resonant particles diffuse toward
a smaller value of v‖ along the diffusive trajectory while,
if (k‖/|k‖|)(Ĝ[kn‖j ]fj/fj) < 0 at a given resonant velocity,
resonant particles diffuse toward a greater value of v‖.

2.4. Numerical Analysis of the Quasi-Linear Diffusion
Equation

To simulate the VDF evolution and to compare the dif-
fusion rates between resonances quantitatively, a rigorous
numerical analysis of Eq. (10) is necessary. For this pur-
pose, we develop a mathematical approach based on the
Crank-Nicolson scheme and present the mathematical
details in Appendix A. Our approach is applicable to all
two-dimensional diffusion equations with off-diagonal dif-
fusion terms. Our numerical solution, given by Eq. (A28),
evolves the VDF under the action of multiple resonances
in one time step. We tested our numerical solution by
showing that the diffusive flux obeys the predicted diffu-
sion properties discussed in Section 2.3.

3. FAST-MAGNETOSONIC/WHISTLER WAVE AND
ELECTRON-STRAHL SCATTERING

As an example, we apply our model developed in Sec-
tion 2 to an electron resonant instability in the solar
wind. The fast-magnetosonic/whistler (FM/W) wave
propagating in the anti-sunward direction and with an
angle of ∼ 60◦ with respect to the background magnetic
field scatters the electron strahl (Vasko et al. 2019; Ver-
scharen et al. 2019). Since this prediction is based on
linear theory, our quasi-linear framework is appropriate
for demonstrating the action of this instability on the
electron strahl.

3.1. Linear Dispersion Relation

To find the characteristics of the unstable oblique
FM/W wave, we numerically solve the hot-plasma dis-
persion relation with the NHDS code (Verscharen &
Chandran 2018). We use the same plasma parameters as
Verscharen et al. (2019), which are, notwithstanding the
wide range of natural variation, representative for the
average electron parameters in the solar wind (Wilson
et al. 2019). We assume that the initial plasma consists
of isotropic Maxwellian protons, core electrons and strahl
electrons. The subscripts p, e, c and s indicate protons,
electrons, electron core and electron strahl, respectively.

We choose our coordinate system so that the anti-
sunward and obliquely propagating FM/W waves have
k‖ > 0. We set βc = βp = 1 and βs = 0.174, where
βj ≡ (8πnjkBTj)/B

2
0 , nj and Tj are the density and

temperature of species j, and kB is the Boltzmann con-
stant. We set np = ne, nc = 0.92np, ns = 0.08np,
Tc = Tp, and Ts = 2Tp. In the proton rest frame, we
set ncUc + nsUs = 0. We initialize the core and strahl
bulk velocity with Uc/vAe = −0.22 and Us/vAe = 2.52

where vAe≡ B0/
√

4πneme is the electron Alfvén velocity.
NHDS finds that, under these plasma parameters, γk > 0
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Figure 2: NHDS solutions provide γk (dashed curves, axis on
the left) and ωk (solid curves, axis on the right) as functions
of the k‖-component of the wavevector k. We show solutions
for θ0 = 51◦, θ0 = 55◦, and θ0 = 59◦.

at angles between θ0 = 51◦ and θ0 = 67◦. Our strahl
bulk velocity then provides a maximum growth rate of
γk/|Ωe| = 10−3 (Verscharen et al. 2019).
Fig. 2 shows γk and ωk as functions of the k‖-

component of the wavevector k for three different θ0. The
oblique FM/W instability has its maximum growth rate
at θ0 = 55◦, while γk > 0 for 0.21 . k‖vAe/|Ωe| . 0.28

which is the parallel unstable k-spectrum. As defined
in Section 2.1, we acquire k‖0vAe/|Ωe| ≈ 0.245. This
value with Eqs. (7)-(9) leads to k⊥0vAe/|Ωe| = 0.35,
ωk0/|Ωe| ≈ 0.07 and vg0/vAe ≈ 0.86. We also acquire
σ‖0vAe/|Ωe| ≈ 0.035 and σ⊥0vAe/|Ωe| ≈ 0.05 from the
obtained unstable k-spectrum.

3.2. Theoretical Description of the Quasi-Linear
Diffusion in the FM/W Instability

Using the wave and plasma parameters from the pre-
vious section, we describe the electron strahl and core
diffusion in velocity space. In our analysis, we only con-
sider n = +1, −1 and 0 resonances, neglecting higher-n
resonances due to their negligible contributions.
Upon substituting our wave parameters into Eq. (20),

we quantify the dimensionless window functions Wn
e vAe

with n = +1, −1 and 0. In Fig. 3, the red, dark-blue and
orange lines represent W+1

e vAe, W−1e vAe and W 0
e vAe,

which are maximum at v+1
‖res/vAe = 4.37, v−1‖res/vAe =

−3.8 and v0‖res/vAe = 0.29, respectively. We reiterate
that the superscripts indicate the n resonance. The black
line indicates v‖ = vg0. Each Wn

e vAe shows the v‖-range
in which the quasi-linear diffusion through each resonance
is effective. We note thatWn

e vAe for the three resonances
have a different width in v‖-space and maximum value
due to a different magnitude of |vn‖res−vg0| (see Eq. (24)).

By substituting our wave parameters into Eq. (28), the
diffusive trajectories for the n = +1, −1 and 0 resonances
are given by

(v⊥/vAe)
2

+ 1.16
(
v‖/vAe − 0.86

)2
= const, (31)

(v⊥/vAe)
2

+ 0.88
(
v‖/vAe − 0.86

)2
= const, (32)

and
(v⊥/vAe)

2
= const. (33)

Eqs. (31) and (32) describe ellipses with their axes ori-
ented along the v⊥- and v‖-directions. In Eq. (33), the
perpendicular velocity of resonant particles is constant.
Fig. 4 illustrates the electron diffusion from these three

resonances. We show the v‖-ranges in which these three
resonances are effective according to W+1

e vAe, W−1e vAe
and W 0

e vAe from Fig. 3. The red, dark-blue and orange
solid lines represent the contours given by Eqs. (31)-
(33), respectively. The light-blue dashed semi-circles
correspond to constant-energy contours in the proton
rest frame (see Eq. (30)). The black line indicates v‖ =

vg0. For the initial strahl and core VDF, we apply the
plasma parameters in Section 3.1 to the dimensionless
Maxwellian distribution

fMj =
njv

3
Ae

π3/2npv3th,j
exp

[
−
v2⊥ + (v‖ − Uj)2

v2th,j

]
, (34)

where vth,j ≡
√

2kBTj/mj . The red and blue areas in
Fig. 4 represent fMs and fMc which are normalized by
the maximum value of fMc and plotted up to a value of
10−5. In this normalization, Fig. 4 does not reflect the
relative density between both electron species.
Due to the v‖-profile of W+1

e , the n = +1 resonance
has a significant effect on fMs . As discussed in Section 2.3,
since (k‖/|k‖|)(Ĝ[k+1

‖e ]fMs /fMs ) > 0, this resonance leads
to the diffusion of the resonant strahl electrons in W+1

e

along the red arrows. According to Eq. (30), the phase-
space trajectory of particles that diffuse without a change
in kinetic energy is described by(

dv⊥
dv‖

)
E

= −
v‖

v⊥
. (35)

According to Eq. (31), the phase-space trajectory of res-
onant particles fulfilling the n = +1 resonance, indicated
by superscript +1, is described by(

dv⊥
dv‖

)+1

= −1.16
vAe
v⊥

(
v‖

vAe
− 0.86

)
. (36)

Evaluating Eqs. (35) and (36) in W+1
e shows that

|(dv⊥/dv‖)+1| < |(dv⊥/dv‖)E | for the resonant electrons.
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Figure 3: The red, dark-blue and orange plots illustrate
W+1

e vAe, W−1
e vAe and W 0

e vAe for the oblique FM/W wave.
The black solid line represents v‖ = vg0. Each Wn

e vAe shows
the v‖-range in which each resonance is effective. EachWn

e vAe

has a different width in v‖-space and maximum value due to
a different magnitude of |vn‖res − vg0| (see Eq. (24)).

Figure 4: The red, dark-blue and orange arrows illustrate the
diffusive flux according to the n = +1, −1 and 0 resonances
for the oblique FM/W instability. The red and dark-blue
filled semi-circles represent isocontours of the strahl and core
VDF. This figure does not reflect the relative densities of
both electron species. The light-blue dashed semi-circles
correspond to constant-energy contours. The black solid line
indicates v‖ = vg0.

Therefore, resolving the ambiguity in the directions of
the trajectories, the distance of resonant strahl electrons
from the origin of the coordinate system decreases. This
decrease in v2⊥ + v2‖ represents a loss of kinetic energy
of the resonant strahl electrons. The n = +1 resonance,
therefore, contributes to the driving of the FM/W insta-
bility.
Due to the v‖-profile of W−1e , the n = −1

resonance has a significant effect on fMc . Since
(k‖/|k‖|)(Ĝ[k−1‖e ]fMc /fMc ) < 0, this resonance leads to
the diffusion of the resonant core electrons in W−1e along
the dark-blue arrows. According to Eq. (32), the phase-

space trajectory of resonant particles fulfilling the n = −1

resonance, indicated by superscript −1, is described by(
dv⊥
dv‖

)−1
= −0.88

vAe
v⊥

(
v‖

vAe
− 0.86

)
. (37)

Evaluating Eqs. (35) and (37) in W−1e shows that
|(dv⊥/dv‖)−1| > |(dv⊥/dv‖)E | for the resonant electrons.
Therefore, resolving the ambiguity in the directions of
the trajectories, the distance of resonant core electrons
from the origin of the coordinate system increases. This
increase in v2⊥ + v2‖ represents a gain of kinetic energy
of the resonant core electrons. The n = −1 resonance,
therefore, counter-acts the FM/W instability through
the n = +1 resonance.
Due to the v‖-profile of W 0

e , the n = 0 resonance
has a significant effect on electrons in the v‖-range
in which fMc > fMs and ∂fMc /∂v‖ < 0. Since
(k‖/|k‖|)(Ĝ[k0‖e]f

M
c /fMc ) < 0, the resonant electrons in

W 0
e diffuse along the yellow arrows. Because the distance

of these electrons from the origin of the coordinate sys-
tem increases, these resonant electrons diffuse towards
greater kinetic energies. This diffusion removes energy
from the resonant FM/W waves and thus counter-acts
the driving of the FM/W instability through the n = +1

resonance.
The illustration in Fig. 4 describes the nature of the

quasi-linear diffusion through the n = +1, −1 and 0 reso-
nances in velocity space. It does not give any information
regarding the relative strengths of the diffusion rates be-
tween the three resonances. Since the FM/W wave is
unstable according to linear theory, the n = +1 reso-
nant instability must dominate over any counter-acting
contributions from the n = −1 and 0 resonances.

3.3. Numerical Description of the Quasi-Linear
Diffusion in the FM/W Instability

We use our numerical analysis in Eq. (A28) to simulate
the quasi-linear diffusion through the n = +1, −1 and 0

resonances, predicted in Section 3.2. According to the
definitions in Appendix A, we select the discretization
parameters Nv = 45, v⊥max/vAe = v‖max/vAe = 7 and
|Ωe|∆t = 1. For the computation of Eq. (A28), we use
the parameters of resonant FM/W waves presented in
Section 3.1 and quantify D̃±1e and D̃0

e in Eq. (19).
In D̃n

e for each resonance, we only consider the J0
term in ψnj0, neglecting higher-order Bessel functions
due to their small contributions. Our NHDS solutions
show that |Ey0 | ≈ 0.2|Ex0 | and |Ez0 | ≈ 0.14|Ex0 | in the
unstable k-spectrum. Then, we set |ER

0 | ≈ |EL
0 | ≈

0.72|Ex
0 |. Faraday’s law yields Ex

0 ≈ [ωk0/(k‖0c)]B
y
0

when neglecting the small contributions from Ez0 terms.
This allows us to express Ex

0 through By
0 in ψnj0, where
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By0 represents the peak amplitude of the wave magnetic-
field fluctuations. For simplicity, we assume that By

0 is
constant in time during the quasi-linear diffusion. Under
these assumptions, we acquire

D̃±1e ≈W±1e

0.52π2|Ωe|2v2⊥
σ‖0σ

2
⊥0

[
By0
B0

ωk0
k‖0

]2
×
∫ ∞
0

J0(ρe)
2 exp

[
− (k⊥ − k⊥0)2

σ2
⊥0

]
k⊥dk⊥,

(38)

and

D̃0
e ≈W 0

e

0.04π2|Ωe|2v2‖
σ‖0σ

2
⊥0

[
By0
B0

ωk0
k‖0

]2
×
∫ ∞
0

J0(ρe)
2 exp

[
− (k⊥ − k⊥0)2

σ2
⊥0

]
k⊥dk⊥,

(39)

where the relative amplitude By0/B0 is a free parameter
and we set By0/B0 = 0.001. Then, we apply Eqs. (38)
and (39) to Eq. (A28).
We initialize our numerical computation with the same

fMs and fMc as defined in Section 3.2. Fig. 5a represents
fe = fMc + fMs , normalized by the maximum value of
fMc and plotted up to a value of 10−5. Fig. 5b shows
fe evolved through the n = +1, −1 and 0 resonances,
resulting from the iterative calculation of Eq. (A28). Con-
sidering the maximum value of the instability’s growth
rate, γk/|Ωe| = 4.8× 10−3 in Fig. 2, we finish the evalu-
ation of our numerical computation at |Ωe|t = 3 × 102

which corresponds to γkt ∼ 1 and thus a reasonable total
growth of the unstable FM/W waves.
The strahl electrons at around v‖/vAe ≈ 4.4 diffuse

through the n = +1 resonance, as theoretically predicted
in Fig. 4. This diffusion increases the pitch-angle of the
resonant strahl electrons and generates a strong pitch-
angle gradient at v‖/vAe ≈ 3.8. During this process, the
v⊥ of the scattered strahl electrons increases while their
v‖ decreases.
Since the longitudinal component of the electric-field

fluctuations is much weaker than their transverse compo-
nents, the diffusion through the n = 0 resonance is not
noticeable over the modeled time interval. The diffusion
through the n = −1 resonance is not noticeable even
though D̃−1e and D̃+1

e have a similar magnitude. This is
because the magnitude of |Ĝ[k−1‖e ]fe/fe| in W−1e is much
smaller than the magnitude of |Ĝ[k+1

‖e ]fe/fe| in W+1
e , as

discussed in Section 2.3, and the number of core electrons
in W−1e is very small (see Fig. 4 and 5).

4. THE SECONDARY EFFECT OF COULOMB
COLLISIONS

Since the collisionless action of resonant wave-particle
instabilities often form strong pitch-angle gradients (see,

(a) |Ωe|t = 0

(b) |Ωe|t = 3× 102

Figure 5: Fig. 5a: the initial electron VDF; Fig. 5b: the
electron VDF evolved through the n = +1, −1 and 0 reso-
nances. Compared to Fig. 4, only the effect of the n = +1
resonance is noticeable during the time γkt ∼ 1. It causes a
significant pitch-angle gradient at v‖/vAe ≈ 3.8 through the
scattering of strahl electrons. An animation of this figure is
available in the HTML version of the article. The animation
shows the time evolution of the distribution function from
|Ωe|t = 0 to |Ωe|t = 3× 102. During this evolution, the strahl
scattering towards larger v⊥ is visible.

for example, Fig. 5), the collisions can be enhanced in the
plasma. Therefore, a more realistic evolution of the total
electron VDF must account for the action of Coulomb col-
lisions of strahl electrons with core electrons and protons.
For this purpose, we adopt the Fokker-Planck equation
given by Ljepojevic et al. (1990) with Rosenbluth poten-
tials (Rosenbluth et al. 1957), and normalize it in our
dimensionless system of units as

(
∂fj
∂t

)
Fokker
−Planck

=
∑
b

Γjb

{
4π
mj

mb
fbfj

+
∂h

∂vα
∂fj
∂vα

+
1

2

∂2g

∂vα∂vβ
∂2fj

∂vα∂vβ

}
,

(40)

where

g(v) ≡
∫
fb(v

′)|v − v′|d3v′, (41)
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h(v) ≡ mb −mj

mb

∫
fb(v

′)|v − v′|−1d3v′, (42)

and

Γjb =
4πnb
v3Ae|Ωe|

(
ZjZbq

2
j

mj

)2

ln Λjb. (43)

The subscript b indicates the species of background
particles, with which the particles of species j Coulomb-
collide. The quantity ln Λjb is the Coulomb logarithm
and typically ln Λjb ≈ 25 in space plasmas. The param-
eters Zj and Zb are the atomic masses of a particle of
species j and b. The superscripts α and β indicate the
component of the velocity in cylindrical coordinates and
the summation convention holds.
We assume that the timescale of Coulomb collisions

is much longer than the timescale of the quasi-linear
diffusion in the solar wind under our set of parameters.
This assumption allows us to model the resonant wave-
particle instability first and to use the resulting VDF
as the input for the model of the subsequent, secondary
effects of collisions.
Based on our mathematical approach presented in

Appendix A, we numerically solve the Fokker-Planck
equation, Eq. (40), in Appendix B. We tested our nu-
merical solutions, Eq. (B31), by showing that a set of
arbitrary test VDFs diffuses toward fb with time.
For the computation of Eq. (B31), we set isotropic

Maxwellian electron-core and proton VDFs as back-
ground species, fb = fMc and fb = fMp , for which we
apply the plasma parameters presented in Section 3.1
to Eq. (34). In this numerical computation, we select
the discretization parameters Nv = 45, v⊥max/vAe =

v‖max/vAe = 7 and |Ωe|∆t = 10. Moreover, we set
B0 = 5× 10−4G and nb = 102cm−3 in Eq. (43), which
are representative for the conditions in the solar wind at
a distance of 0.3 au from the Sun. We initialize fj with
the electron-strahl VDF as fs evolved by the oblique
FM/W instability at time |Ωe|t = 3×102 from our quasi-
linear analysis. In this setup, our initial electron VDF
for the Coulomb collision analysis is same as the electron
VDF shown in Fig. 5b.
The iterative calculation of Eq. (B31) results in the

time evolution of the electron-strahl VDF under the
action of Coulomb collisions with core electrons and
protons. The result of this computation at the time
|Ωe|t = 7× 107 is shown in Fig. 6.
A detailed comparison of the distribution function be-

fore (Fig. 6a) and after (Fig. 6b) our calculation of the ef-
fect of Coulomb collisions reveals that Coulomb collisions
relax the strong pitch-angle gradient at v‖/vAe ≈ 3.8,
which resulted from the action of the oblique FM/W
instability. However, the Coulomb collisions are only

(a) |Ωe|t = 3× 102

(b) |Ωe|t = 7× 107

Figure 6: Fig. 6a: the electron VDF as initial condition for
our collision analysis; Fig. 6b: the electron VDF evolved
through Coulomb collisions of strahl electrons with core
electrons and protons. The strong pitch-angle gradient at
v‖/vAe ≈ 3.8 (shown in Fig. 6a and Fig. 5b) is relaxed through
the Coulomb collisions. However, the required time for a no-
ticeable collisional effect on that gradient is around 105 times
longer than the timescale of the strahl scattering. An an-
imation of this figure is available in the HTML version of
the article. The animation shows the time evolution of the
distribution function from |Ωe|t = 3× 102 to |Ωe|t = 7× 107.
During this evolution, the collisional smoothing of the pitch-
angle gradients is visible.

capable of affecting strong pitch-angle gradients in the
modified electron VDF under our plasma parameters. In
addition, the required time for a noticeable collisional
effect on this pitch-angle gradient is of order 105 times
longer than the characteristic timescale of the quasi-linear
diffusion.

5. DISCUSSION FOR THE STRAHL SCATTERING

The numerical computation of Eq. (17) shows that
dH/dt is negative and asymptotically tends towards zero
as the electron VDF evolves through the oblique FM/W
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instability and the counter-acting damping effects until
the time |Ωe|t = 3 × 102, which is presented in Fig. 5.
Therefore, our quasi-linear diffusion model reflects the
stabilization of the particle VDF through the participat-
ing wave-particle resonances.
During the action of the oblique FM/W instability,

the scattered strahl electrons reduce their collimation
along the B0-direction and become more isotropic. Even
though this instability does not cause significant strahl
scattering, we argue that it contributes to the initial
formation of the halo population. However, other mech-
anisms must be considered to account for the full strahl
scattering in agreement with observations (Gurgiolo et al.
2012; Gurgiolo & Goldstein 2016).
Alternative models describing Coulomb-collisional ef-

fects on the strahl VDF suggest that an anomalous-
diffusion process must be considered in order to achieve
an agreement with observations (Lemons & Feldman
1983; Horaites et al. 2018, 2019). We note that our anal-
ysis includes the subsequent action of Coulomb collisions
after the action of collisionless wave-particle resonances
assuming plasma parameters consistent with the solar
wind at a distance of 0.3 au from the Sun. Our colli-
sional effects are similar to those proposed by Vocks et al.
(2005). However, our model predicts that the collisional
relaxation is so subtle that the strahl scattering through
collisions is barely noticeable for the analyzed phase of
the VDF evolution.
The clear separation of timescales between wave-

particle effects and Coulomb-collisional effects compli-
cates the description of the VDF evolution on heliospheric
scales, since other processes act on comparable timescales.
These additional processes, which our analysis neglects,
include turbulence, shocks, plasma mixing, plasma expan-
sion, and magnetic focusing (Yoon et al. 2012; Ryu et al.
2007; Feldman et al. 1983; Fitzenreiter et al. 2003; Tang
et al. 2020). A complete model for the radial evolution of
the VDF must quantify and account for these processes
as well. In the context of our work, these processes can
potentially push a VDF that has undergone stabilization
as shown in Fig. 5b into the unstable regime again. In
this case, dH/dt in Eq. (17) returns to a non-zero value,
which signifies a new onset of wave-particle resonances
and further scattering of resonant particles.

6. CONCLUSIONS

Wave-particle resonances are important plasma-physics
processes in many astrophysical plasmas. Often, fully
non-linear simulations with codes solving the equations
of kinetic plasma theory are used to model the evolu-
tion of the distribution function under the action of
wave-particle resonances. However, quasi-linear theory

augments this approach since it allows us to study the
contributions of different processes to these resonances.
Therefore, quasi-linear theory is a very helpful tool to
improve our understanding of wave-particle resonances
in astrophysical plasmas.
We propose a quasi-linear diffusion model for any gen-

eralized wave-particle instability. We analyze the quasi-
linear diffusion equation by expressing the electric field
of an arbitrary unstable and resonant wave mode as a
Gaussian wave packet. From Boltzmann’s H-theorem
with our quasi-linear analysis, we define a window func-
tion that determines the specific velocity-space range in
which a dominant wave-particle instability and counter-
acting damping contributions are effective. This window
function is the consequence of the localized energy den-
sity of our Gaussian wave packet both in configuration
space and in wavevector space.
Moreover, we derive a relation describing the diffu-

sive trajectories of the resonant particles for such an
instability in velocity space. These trajectories evolve
the particle VDF into a stable state in which no further
quasi-linear diffusion occurs. Therefore, our theoretical
model illustrates the diffusion and stabilization which
resonant particles, depending on their location in velocity
space, experience in wave-particle resonances.
For the computational quantification of our theoretical

model, we introduce a mathematical approach based
on the Crank-Nicolson scheme to numerically solve the
full quasi-linear diffusion equation. We highlight that
this mathematical approach applies to all general two-
dimensional diffusion equations, including those with
off-diagonal diffusion terms.
As an example, we apply our model to the oblique

FM/W instability that scatters strahl electrons in the
solar wind. Our model shows that the n = +1 resonant
instability of FM/W waves propagating with an angle
of ∼ 55◦ with respect to the background magnetic field
scatters strahl electrons towards larger v⊥ and smaller
v‖. The strahl scattering instability through the n = +1

resonance dominates over the counter-acting damping
contributions through the n = −1 and n = 0 resonances.
This instability creates a strong pitch-angle gradient in
the electron-strahl VDF.
By numerically solving the Fokker-Planck equation

with our mathematical approach, we show that Coulomb
collisions of strahl electrons with core electrons and pro-
tons relax this strong pitch-angle gradient on a timescale
105 times longer than the timescale of the collisionless
strahl scattering. This finding suggests that collisional
effects are negligible in the strahl-driven oblique FM/W
instability, which is a representative example for a reso-
nant wave-particle instability in the solar wind.
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Our predicted evolution of the electron VDF is consis-
tent with the observed formation of a proto-halo through
strahl scattering (Gurgiolo et al. 2012). However, further
observations are ambiguous regarding the exact source
of the proto-halo (Gurgiolo & Goldstein 2016). Future
high-resolution electron observations with Solar Orbiter
and Parker Solar Probe at different distances from the
Sun may help us to resolve these ambiguities.
Our general quasi-linear diffusion model applies to all

non-relativistic collisionless plasmas, such as planetary
magnetosphere (e.g. Mourenas et al. 2015). It also applies
to other types of wave-particle instabilities in plasmas

such as the resonant instabilities driven by temperature
anisotropy or by relative drift. We especially note that
our model is capable of describing ion-driven instabilities.
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APPENDIX

A. NUMERICAL ANALYSIS OF QUASI-LINEAR DIFFUSION EQUATION

Eq. (10) is a second-order differential equation which includes cross-derivative operators such as ∂2/∂v‖∂v⊥. In order
to simultaneously evaluate the ∂2/∂v‖∂v⊥ operators with the ∂2/∂v2‖ and ∂2/∂v2⊥ operators in Eq. (10), we divide
velocity space into 2Nv × 2Nv steps with equal step sizes of ∆v/2 by defining the outer boundaries of velocity space
as ±v⊥max and ±v‖max. The v⊥-index M and the v‖-index N both step through 1, 3/2, 2, . . . , Nv, Nv + 1/2. We
define the discrete velocity coordinates as v⊥M = −v⊥max + (M − 1)∆v and v‖N = −v‖max + (N − 1)∆v. We note that
this definition introduces negative v⊥-values that, although they simplify our numerical analysis, we neglect in our
computational results. We divide the time t with equal step sizes of ∆t and the t-index T steps through 1, 2, 3, · · · . We
define the discrete time as tT = (T − 1)∆t. We then define the discrete VDF as fTM,N = fj(v⊥M , v‖N , t

T ). For the
discretization of the velocity derivatives, we adopt the two-point central difference operator (Gilat & Subramaniam
2011)

∂fj(v⊥M , v‖N , t
T )

∂v⊥
≈
fTM+1/2,N − f

T
M−1/2,N

∆v
, (A1)

and
∂fj(v⊥M , v‖N , t

T )

∂v‖
≈
fTM,N+1/2 − f

T
M,N−1/2

∆v
. (A2)

For the discretization of the time derivative, we adopt the forward difference operator

∂fj(v⊥M , v‖N , t
T )

∂t
≈
fT+1
M,N − fTM,N

∆t
. (A3)

By using Eqs. (A2) and (A1), we discretize the right-hand side of Eq. (10) and express it as (∂f/∂t)TM,N(
∂f

∂t

)T
M,N

≡
∞∑

n=−∞

∫ [(
1−

k‖v‖N

ωk0 + vg0(k‖ − k‖0)

)
1

v⊥M

Dn
M+1/2,N [Ĝf ]TM+1/2,N −D

n
M−1/2,N [Ĝf ]TM−1/2,N

∆v

+
k‖

ωk0 + vg0(k‖ − k‖0)

Dn
M,N+1/2[Ĝf ]TM,N+1/2 −D

n
M,N−1/2[Ĝf ]TM,N−1/2

∆v

]
d3k,

(A4)

where

[Ĝf ]TM,N ≡

(
1−

k‖v‖N

ωk0 + vg0(k‖ − k‖0)

)
1

v⊥M

fTM+1/2,N − f
T
M−1/2,N

∆v
+

k‖

ωk0 + vg0(k‖ − k‖0)

fTM,N+1/2 − f
T
M,N−1/2

∆v
, (A5)

and

Dn
M,N ≡ Dn

j

∣∣v⊥=v⊥M
v‖=v‖N

. (A6)
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According to the Crank-Nicolson scheme (Iserles 2008), the full discretization of Eq. (10) in its time and velocity
derivatives is then given by

fT+1
M,N −

∆t

2

(
∂f

∂t

)T+1

M,N

= fTM,N +
∆t

2

(
∂f

∂t

)T
M,N

. (A7)

By using Eqs. (A4)-(A6) and resolving the δ-functions in Dn
M±1/2,N and Dn

M,N±1/2 through the k‖-integral, we rewrite
Eq. (A7) as

fT+1
M,N−

∞∑
n=−∞

{
µ

2
PnM,N D̃

n
M+1/2,N

[
PnM+1/2,N

(
fT+1
M+1,N − f

T+1
M,N

)
+QnN

(
fT+1
M+1/2,N+1/2 − f

T+1
M+1/2,N−1/2

)]
− µ

2
PnM,N D̃

n
M−1/2,N

[
PnM−1/2,N

(
fT+1
M,N − f

T+1
M−1,N

)
+QnN

(
fT+1
M−1/2,N+1/2 − f

T+1
M−1/2,N−1/2

)]
+
µ

2
QnN+1/2D̃

n
M,N+1/2

[
PnM,N+1/2

(
fT+1
M+1/2,N+1/2 − f

T+1
M−1/2,N+1/2

)
+QnN+1/2

(
fT+1
M,N+1 − f

T+1
M,N

)]
− µ

2
QnN−1/2D̃

n
M,N−1/2

[
PnM,N−1/2

(
fT+1
M+1/2,N−1/2 − f

T+1
M−1/2,N−1/2

)
+QnN−1/2

(
fT+1
M,N − f

T+1
M,N−1

)]}

= fTM,N+

∞∑
n=−∞

{
µ

2
PnM,N D̃

n
M+1/2,N

[
PnM+1/2,N

(
fTM+1,N − fTM,N

)
+QnN

(
fTM+1/2,N+1/2 − f

T
M+1/2,N−1/2

)]
− µ

2
PnM,N D̃

n
M−1/2,N

[
PnM−1/2,N

(
fTM,N − fTM−1,N

)
+QnN

(
fTM−1/2,N+1/2 − f

T
M−1/2,N−1/2

)]
+
µ

2
QnN+1/2D̃

n
M,N+1/2

[
PnM,N+1/2

(
fTM+1/2,N+1/2 − f

T
M−1/2,N+1/2

)
+QnN+1/2

(
fTM,N+1 − fTM,N

)]
− µ

2
QnN−1/2D̃

n
M,N−1/2

[
PnM,N−1/2

(
fTM+1/2,N−1/2 − f

T
M−1/2,N−1/2

)
+QnN−1/2

(
fTM,N − fTM,N−1

)]}
,

(A8)

where

PnM,N ≡
nΩj [v‖N − vg0]

[(ωk0 − k‖0vg0)v‖N − nΩjvg0]v⊥M
, (A9)

QnN ≡
ωk0 − k‖0vg0 − nΩj

(ωk0 − k‖0vg0)v‖N − nΩjvg0
, (A10)

D̃n
M,N ≡ D̃n

j

∣∣v⊥=v⊥M
v‖=v‖N

, (A11)

and µ ≡ ∆t/ (∆v)
2. Eq. (A8) is a two-dimensional set of algebraic equations, the solution of which, fT+1

M,N , for all v⊥-
and v‖-indexes describes the VDF at time T + 1 based on fTM,N for all v⊥- and v‖-indexes.
In order to transform Eq. (A8) into a single matrix equation with a tridiagonal matrix, we introduce the concept of a

double matrix. On both sides of Eq. (A8), we group the terms by the same v⊥-index in the VDF and rearrange these
groups in increasing order in v⊥-index. In each group, we then rearrange terms in increasing order in v‖-index in the
VDF. Then, we have

− η(µ)
(1)
M,Nf

T+1
M−1,N − ξ(µ)

(12)
M,Nf

T+1
M−1/2,N−1/2 + ξ(µ)

(11)
M,Nf

T+1
M−1/2,N+1/2 − α(µ)

(2)
M,Nf

T+1
M,N−1 + α(µ)M,Nf

T+1
M,N

− α(µ)
(1)
M,Nf

T+1
M,N+1 + ξ(µ)

(22)
M,Nf

T+1
M+1/2,N−1/2 − ξ(µ)

(21)
M,Nf

T+1
M+1/2,N+1/2 − η(µ)

(2)
M,Nf

T+1
M+1,N

=

− η(−µ)(1)M,Nf
T
M−1,N − ξ(−µ)

(12)
M,Nf

T
M−1/2,N−1/2 + ξ(−µ)(11)M,Nf

T
M−1/2,N+1/2 − α(−µ)(2)M,Nf

T
M,N−1 + α(−µ)M,Nf

T
M,N

− α(−µ)(1)M,Nf
T
M,N+1 + ξ(−µ)(22)M,Nf

T
M+1/2,N−1/2 − ξ(−µ)

(21)
M,Nf

T
M+1/2,N+1/2 − η(−µ)(2)M,Nf

T
M+1,N ,

(A12)
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where

α(µ)M,N = 1 +
µ

2

∞∑
n=−∞

[(
PnM,NP

n
M+1/2,N

)
D̃n
M+1/2,N +

(
PnM,NP

n
M−1/2,N

)
D̃n
M−1/2,N

+
(
QnN+1/2

)2
D̃n
M,N+1/2 +

(
QnN−1/2

)2
D̃n
M,N−1/2

]
,

(A13)

α(µ)
(1)
M,N ≡

µ

2

∞∑
n=−∞

[(
QnN+1/2

)2
D̃n
M,N+1/2

]
, (A14)

α(µ)
(2)
M,N ≡

µ

2

∞∑
n=−∞

[(
QnN−1/2

)2
D̃n
M,N−1/2

]
, (A15)

ξ(µ)
(11)
M,N ≡

µ

2

∞∑
n=−∞

[ (
PnM,NQ

n
N

)
D̃n
M−1/2,N +

(
PnM,N+1/2Q

n
N+1/2

)
D̃n
M,N+1/2

]
, (A16)

ξ(µ)
(12)
M,N ≡

µ

2

∞∑
n=−∞

[ (
PnM,NQ

n
N

)
D̃n
M−1/2,N +

(
PnM,N−1/2Q

n
N−1/2

)
D̃n
M,N−1/2

]
, (A17)

ξ(µ)
(21)
M,N ≡

µ

2

∞∑
n=−∞

[ (
PnM,NQ

n
N

)
D̃n
M+1/2,N +

(
PnM,N+1/2Q

n
N+1/2

)
D̃n
M,N+1/2

]
, (A18)

ξ(µ)
(22)
M,N ≡

µ

2

∞∑
n=−∞

[ (
PnM,NQ

n
N

)
D̃n
M+1/2,N +

(
PnM,N−1/2Q

n
N−1/2

)
D̃n
M,N−1/2

]
, (A19)

η(µ)
(1)
M,N ≡

µ

2

∞∑
n=−∞

[(
PnM,NP

n
M−1/2,N

)
D̃n
M−1/2,N

]
, (A20)

and

η(µ)
(2)
M,N ≡

µ

2

∞∑
n=−∞

[(
PnM,NP

n
M+1/2,N

)
D̃n
M+1/2,N

]
. (A21)

All terms in both sides of Eq. (A12) with a constant v⊥-index account for variations in the v‖-space only. Therefore,
they can be grouped into a single system of one-dimensional algebraic equations.
We transform all terms with v⊥-index of M in both sides of Eq. (A12) into the tridiagonal matrices [A(µ)M ][FT+1

M ]

and [A(−µ)M ][FTM ], where FTM = [fTM,1 f
T
M, 32

fTM,2 · · · fTM,Nv
]T1×2Nv

(T represents the transpose of a matrix), and

A(µ)M ≡



α(µ)M,1 0 −α(µ)
(1)
M,2 0 0 · · · 0

0 α(µ)M,3/2 0 −α(µ)
(1)
M,5/2 0 · · · 0

−α(µ)
(2)
M,1 0 α(µ)M,2 0 −α(µ)

(1)
M,3 · · · 0

...
. . .

...
0 · · · 0 −α(µ)

(2)
M,Nv−1 0 α(µ)M,Nv

0

0 · · · 0 0 −α(µ)
(2)
M,Nv−1/2 0 α(µ)M,Nv+1/2


2Nv×2Nv

. (A22)

We transform all terms with v⊥-index ofM−1/2 in both sides of Eq. (A12) into the tridiagonal matrices [B(µ)
(1)
M ][FT+1

M−1/2]

and [B(−µ)
(1)
M ][FTM−1/2], where

B(µ)
(1)
M ≡



0 ξ(µ)
(11)
M,3/2 0 · · · 0

−ξ(µ)
(12)
M,1 0 ξ(µ)

(11)
M,2 · · · 0

...
. . .

...
0 · · · −ξ(µ)

(12)
M,Nv−1/2 0 ξ(µ)

(11)
M,Nv+1/2

0 · · · 0 −ξ(µ)
(12)
M,Nv

0


2Nv×2Nv

. (A23)
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We transform all terms with v⊥-index ofM+1/2 in both sides of Eq. (A12) into the tridiagonal matrices [B(µ)
(2)
M ][FT+1

M+1/2]

and [B(−µ)
(2)
M ][FTM+1/2], where

B(µ)
(2)
M ≡



0 −ξ(µ)
(21)
M,3/2 0 · · · 0

ξ(µ)
(22)
M,1 0 −ξ(µ)

(21)
M,2 · · · 0

...
. . .

...
0 · · · ξ(µ)

(22)
M,Nv−1/2 0 −ξ(µ)

(21)
M,Nv+1/2

0 · · · 0 ξ(µ)
(22)
M,Nv

0


2Nv×2Nv

. (A24)

We transform all terms with v⊥-index of M − 1 in both sides of Eq. (A12) into the tridiagonal matrices [C(µ)
(1)
M ][FT+1

M−1]

and [C(−µ)
(1)
M ][FTM−1], where

C(µ)
(1)
M ≡


−η(µ)

(1)
M,1 0 · · · 0

0 −η(µ)
(1)
M,3/2 · · · 0

...
. . .

...
0 · · · 0 −η(µ)

(1)
M,Nv+1/2


2Nv×2Nv

. (A25)

Lastly, we transform all terms with v⊥-index of M + 1 in both sides of Eq. (A12) into the tridiagonal matrices
[C(µ)

(2)
M ][FT+1

M+1] and [C(−µ)
(2)
M ][FTM+1], where

C(µ)
(2)
M ≡


−η(µ)

(2)
M,1 0 · · · 0

0 −η(µ)
(2)
M,3/2 · · · 0

...
. . .

...
0 · · · 0 −η(µ)

(2)
M,Nv+1/2


2Nv×2Nv

. (A26)

This strategy allows us to express Eq. (A12) as a single system of one-dimensional algebraic equations

[C(µ)
(1)
M ][FT+1

M−1] + [B(µ)
(1)
M ][FT+1

M−1/2] + [A(µ)M ][FT+1
M ] + [B(µ)

(2)
M ][FT+1

M+1/2] + [C(µ)
(2)
M ][FT+1

M+1]

= [C(−µ)
(1)
M ][FTM−1] + [B(−µ)

(1)
M ][FTM−1/2] + [A (−µ)M ][FTM ] + [B(−µ)

(2)
M ][FTM+1/2] + [C(−µ)

(2)
M ][FTM+1].

(A27)

Eq. (A27) only describes the VDF evolution in the v⊥-space. However, each matrix term itself includes the VDF
evolution in the v‖-space. We transform Eq. (A27) into a single tridiagonal matrix

E(µ)QLD



FT+1
1

FT+1
3/2

FT+1
2
...

FT+1
Nv+1/2


(2Nv)

2×1

= E(−µ)QLD



FT1
FT3/2

FT2
...

FTNv+1/2


(2Nv)

2×1

, (A28)

where

E(µ)QLD ≡



A(µ)1 B(µ)
(2)
1 C(µ)

(2)
1 0 0 · · · 0

B(µ)
(1)
3/2 A(µ)3/2 B(µ)

(2)
3/2 C(µ)

(2)
3/2 0 · · · 0

C(µ)
(1)
2 B(µ)

(1)
2 A (µ)2 B(µ)

(2)
2 C(µ)

(2)
2 · · · 0

...
. . .

...

0 · · · 0 C(µ)
(1)
Nv

B(µ)
(1)
Nv

A (µ)Nv
B(µ)

(2)
Nv

0 · · · 0 0 C(µ)
(1)
Nv+1/2 B(µ)

(1)
Nv+1/2 A (µ)Nv+1/2


(2Nv)

2×(2Nv)
2

. (A29)
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Eq. (A28) is in the form of a double matrix and E(µ)QLD in Eq. (A29) defines the evolution matrix. The inner matrices
of E(µ)QLD evolve fTM,N in the v‖-space while the outer matrices of E(µ)QLD evolve fTM,N in the v⊥-space during each
time step. By multiplying Eq. (A28) with the inverse of E(µ)QLD on both sides, Eq. (A28) provides the time evolution
of fTM,N in one time step simultaneously in the v⊥- and v‖-spaces. Therefore, it represents the numerical solution of
Eq. (10) which describes the quasi-linear diffusion of a VDF through the all resonances.

B. NUMERICAL ANALYSIS OF FOKKER-PLANCK EQUATION

In this Appendix, we present our numerical strategy to solve the Fokker-Planck equation for Coulomb collisions in
Eq. (40). Using the Crank-Nicolson scheme presented in Appendix A, we discretize Eq. (40) as

fT+1
M,N−

∑
b

Γjb
2

[
4π(∆v)2µ

mj

mb
fb(v⊥M , v‖N )fT+1

M,N + µg
‖⊥
M,N

(
fT+1
M+1/2,N+1/2 − f

T+1
M−1/2,N+1/2 − f

T+1
M+1/2,N−1/2

+ fT+1
M−1/2,N−1/2

)
+
µg⊥⊥M,N

2

(
fT+1
M+1,N − 2fT+1

M,N + fT+1
M−1,N

)
+
µg
‖‖
M,N

2

(
fT+1
M,N+1 − 2fT+1

M,N + fT+1
M,N−1

)
+ (∆v)µh⊥M,N

(
fT+1
M+1/2,N − f

T+1
M−1/2,N

)
+ (∆v)µh

‖
M,N

(
fT+1
M,N+1/2 − f

T+1
M,N−1/2

)]
= fTM,N+

∑
b

Γjb
2

[
4π(∆v)2µ

mj

mb
fb(v⊥M , v‖N )fTM,N + µg

‖⊥
M,N

(
fTM+1/2,N+1/2 − f

T
M−1/2,N+1/2 − f

T
M+1/2,N−1/2

+ fTM−1/2,N−1/2

)
+
µg⊥⊥M,N

2

(
fTM+1,N − 2fTM,N + fTM−1,N

)
+
µg
‖‖
M,N

2

(
fTM,N+1 − 2fTM,N + fTM,N−1

)
+ (∆v)µh⊥M,N

(
fTM+1/2,N − f

T
M−1/2,N

)
+ (∆v)µh

‖
M,N

(
fTM,N+1/2 − f

T
M,N−1/2

)]
,

(B30)

where g⊥⊥M,N ≡ ∂2g/∂v2⊥, g
‖‖
M,N ≡ ∂2g/∂v2‖, g

‖⊥
M,N ≡ ∂2g/∂v‖∂v⊥, h⊥M,N ≡ ∂h/∂v⊥ and h‖M,N ≡ ∂h/∂v‖, estimated at

v⊥ = v⊥M and v‖ = v‖N .
Eq. (B30) represents a system of two-dimensional algebraic equations. Therefore, we transform Eq. (B30) into a

single tridiagonal matrix using the same strategy for a double matrix as presented in Appendix A

E(µ)F



FT+1
1

FT+1
3/2

FT+1
2
...

FT+1
Nv+1/2


(2Nv)

2×1

= E(−µ)F



FT1
FT3/2

FT2
...

FTNv+1/2


(2Nv)

2×1

, (B31)

where

E(µ)F ≡



X(µ)1 −Y (µ)1 Z(µ)1 0 0 · · · 0

Y (µ)3/2 X(µ)3/2 −Y (µ)3/2 Z(µ)3/2 0 · · · 0

Z(µ)2 Y (µ)2 X(µ)2 −Y (µ)2 Z(µ)2 · · · 0
...

. . .
...

0 · · · 0 Z(µ)Nv Y (µ)Nv X(µ)Nv −Y (µ)Nv

0 · · · 0 0 Z(µ)Nv+1/2 Y (µ)Nv+1/2 X(µ)Nv+1/2


(2Nv)2×(2Nv)2

, (B32)
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X(µ)M≡



ε(µ)M,1 −ε(µ)
(2)
M,3/2 −ε(µ)

(1)
M,2 0 0 · · · 0

ε(µ)
(2)
M,1 ε(µ)M,3/2 −ε(µ)

(2)
M,2 −ε(µ)

(1)
M,5/2 0 · · · 0

−ε(µ)
(1)
M,1 ε(µ)

(2)
M,3/2 ε(µ)M,2 −ε(µ)

(2)
M,5/2 −ε(µ)

(1)
M,3 · · · 0

...
. . .

...

0 · · · 0 −ε(µ)
(1)
M,Nv−1 ε(µ)

(2)
M,Nv−1/2 ε(µ)M,Nv

−ε(µ)
(2)
M,Nv+1/2

0 · · · 0 0 −ε(µ)
(1)
M,Nv−1/2 ε(µ)

(2)
M,Nv

ε(µ)M,Nv+1/2


2Nv×2Nv

, (B33)

Y (µ)M ≡



%(µ)
(2)
M,1 %(µ)

(1)
M,3/2 0 0 · · · 0

−%(µ)
(1)
M,1 %(µ)

(2)
M,3/2 %(µ)

(1)
M,2 0 · · · 0

...
. . .

...

0 · · · 0 −%(µ)
(1)
M,Nv−1/2 %(µ)

(2)
M,Nv

%(µ)
(1)
M,Nv+1/2

0 · · · 0 0 −%(µ)
(1)
M,Nv

%(µ)
(2)
M,Nv+1/2


2Nv×2Nv

, (B34)

Z(µ)M ≡


−τ(µ)M,1 0 · · · 0

0 −τ(µ)M,3/2 · · · 0
...

. . .
...

0 · · · 0 −τ(µ)M,Nv+1/2


2Nv×2Nv

, (B35)

ε(µ)M,N ≡ 1− µ
∑
b

Γjb

[
2π(∆v)2

mj

mb
fb(v⊥M , v‖N )−

g⊥⊥M,N

2
−
g
‖‖
M,N

2

]
, (B36)

ε(µ)
(1)
M,N ≡ µ

∑
b

Γjbg
‖‖
M,N

4
, (B37)

ε(µ)
(2)
M,N ≡ µ

∑
b

Γjbh
‖
M,N (∆v)

2
, (B38)

%(µ)
(1)
M,N ≡ µ

∑
b

Γjbg
‖⊥
M,N

2
, (B39)

%(µ)
(2)
M,N ≡ µ

∑
b

Γjbh
⊥
M,N (∆v)

2
, (B40)

and

τ(µ)M,N ≡ µ
∑
b

Γjbg
⊥⊥
M,N

4
. (B41)

Like Eq. (A28), Eq. (B31) provides the time evolution of fTM,N in one time step simultaneously in the v⊥- and v‖-spaces.
Therefore, it represents the numerical solution of Eq. (40) which describes the action of Coulomb collisions of particles
in fj with particles in fb.
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