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Abstract
In response to stimuli, biological processes are tightly controlled by dynamic cellular

signaling mechanisms. Reversible protein phosphorylation occurs on rapid time-scales (mil-

liseconds to seconds), making it an ideal carrier of these signals. Advances in mass spec-

trometry-based proteomics have led to the identification of many tens of thousands of

phosphorylation sites, yet for the majority of these the kinase is unknown and the underlying

network topology of signaling networks therefore remains obscured. Identifying kinase sub-

strate relationships (KSRs) is therefore an important goal in cell signaling research. Existing

consensus sequence motif based prediction algorithms do not consider the biological con-

text of KSRs, and are therefore insensitive to many other mechanisms guiding kinase-sub-

strate recognition in cellular contexts. Here, we use temporal information to identify

biologically relevant KSRs from Large-scale In Vivo Experiments (KSR-LIVE) in a data-

dependent and automated fashion. First, we used available phosphorylation databases to

construct a repository of existing experimentally-predicted KSRs. For each kinase in this

database, we used time-resolved phosphoproteomics data to examine how its substrates

changed in phosphorylation over time. Although substrates for a particular kinase clustered

together, they often exhibited a different temporal pattern to the phosphorylation of the

kinase. Therefore, although phosphorylation regulates kinase activity, our findings imply

that substrate phosphorylation likely serve as a better proxy for kinase activity than kinase

phosphorylation. KSR-LIVE can thereby infer which kinases are regulated within a biologi-

cal context. Moreover, KSR-LIVE can also be used to automatically generate positive train-

ing sets for the subsequent prediction of novel KSRs using machine learning approaches.
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We demonstrate that this approach can distinguish between Akt and Rps6kb1, two kinases

that share the same linear consensus motif, and provide evidence suggesting IRS-1 S265

as a novel Akt site. KSR-LIVE is an open-access algorithm that allows users to dissect

phosphorylation signaling within a specific biological context, with the potential to be

included in the standard analysis workflow for studying temporal high-throughput signal

transduction data.

Introduction
Cells use intricate signaling networks to monitor and respond to environmental cues and to
appropriately regulate specialized biological functions such as differentiation, metabolism and
proliferation. A significant portion of signal transduction is mediated via the posttranslational
modification (PTM) of proteins. One of the most prevalent and acute PTMs is phosphoryla-
tion, particularly on Ser/Thr residues. Phosphorylation is mediated by protein kinases, each of
which targets a specific subset of protein substrates. The specificity of these interactions is gov-
erned by a range of factors such as the structure of the kinase catalytic site, subcellular localiza-
tion and the formation of regulatory scaffolds and adaptor proteins [1]. This specificity enables
the cell to respond precisely to external stimuli.

The study of cell signaling networks has been revolutionized by high throughput proteomics
methods and analytical workflows, enabling collection, analysis and quantification of protein
phosphorylation on a global scale (hereafter called “phosphoproteomics”) [2]. Current large-
scale phosphoproteomics experiments employing extensive fractionation can identify more
than 30,000 phosphorylation sites [3], revealing that as many as two thirds of the proteins in
the cell are phosphorylated [3,4]. In addition to being able to measure the phosphoproteome to
great depth, recent developments now enable quantification of the phosphoproteome across
hundreds of samples in a high-throughput and reproducible manner [5,6]. The availability of
increasingly large volumes of phosphoproteomics data poses new challenges. Most notably,
there is a growing need to identify the links between kinases and the thousands of phosphoryla-
tion sites identified in these studies. This will greatly help to map the structure of signaling net-
works, understanding which, when, and how kinases respond to different external cues.

A key development in identifying the relationships between kinases and their substrates was
the recognition that short stretches of amino acid sequence (consensus sequence motifs) could
be used to predict kinase-substrates [7]. This has been used as the foundation for numerous
computational methods for predicting KSRs, including ScanSite [8], GPS [9], NetPhosK [10]
and KinasePhos [11]. However this approach is limited by the fact that closely related kinases
belonging to the same family often share highly similar phosphorylation recognition motifs.
For example, several kinases of the AGC family (e.g. Akt, and S6K) recognize the same consen-
sus motif RxRxxS/T [12]. Dissecting precisely which kinase is responsible for phosphorylating
a substrate can therefore be particularly challenging especially if these related kinases also form
part of the same signaling network [13]. Therefore, methods which utilize information in addi-
tion to linear sequence are required to improve prediction accuracy. One method that has been
extensively used is integrating information about protein-protein interactions (PPI) and the
consensus motif (e.g. NetworKIN [14], iGPS [15]). However, PPI databases (e.g. STRING [16])
typically have low information content about kinases and their substrates, since the transient
interactions between these molecules are not captured by affinity-purification experiments.
Moreover these data are derived from experiments performed under a wide range of different
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conditions including different cell lines and stimuli. Curating signaling networks in a manual
or semi-automated manner using literature-derived knowledge can circumvent these caveats,
however this is a time consuming process and is prone to false negatives, owing to a lack of
high-quality supporting experimental data. In a study of dynamic phosphorylation in adipo-
cytes, we found that the temporal change in phosphorylation of kinase substrates in response
to a perturbation provides a high resolution method of segregating kinase activation [17]. We
therefore propose that temporal information may serve to help identify kinases active under a
specific biological context from large-scale phosphoproteomics data.

Here, we developed an approach to enable automatic identification of biologically relevant
KSRs–substrates that are phosphorylated by a kinase within the biological context of the exper-
iment–using Large scale In Vivo temporal Experiments (KSR-LIVE). KSR-LIVE sources previ-
ously reported experimentally-derived KSR data from a comprehensive knowledgebase, and
uses a clustering procedure on temporal data to filter for biologically relevant KSRs. KSR-LIVE
can be easily integrated into standard bioinformatics workflows, and is available as an R pack-
age on CRAN (https://cran.r-project.org/package=ksrlive).

Results
We formulated an approach to identify biologically relevant KSRs in large-scale datasets in an
automated fashion. First, the phosphoproteomics dataset is compared to a database of experi-
mentally validated KSRs to extract potential substrates for each kinase. Next, the temporal pro-
files of these potential substrates are clustered, to identify biologically relevant substrates for
each kinase within the dataset’s experimental context. This substrate list can then be utilized as
markers for kinase activity and as a training set for predicting novel KSRs.

Construction of a comprehensive knowledgebase of site-specific kinase
substrate relationships
To generate a large source of experimentally derived KSRs, we combined the knowledge of four
resources: PhosphoSitePlus [18], PhosphoELM [19], PhosphoPOINT [20] and Human Protein
Reference Database (HPRD) [21]. Overall this integrated database contained 396 kinases, 76%
coverage of the human kinome [22]. There were approximately 8,000 phosphorylation sites
on> 2,000 proteins where the kinase was provided in the database, this resulted in approxi-
mately 11,500 KSRs. Of these KSRs, ~38% were uniquely found in PhosphoSitePlus, yet only
12% were found in all of the databases, justifying the integration of several data sources.

Tight clustering enables identification of biologically relevant KSRs
As a case study for developing this approach we used a time-resolved phosphoproteome previ-
ously reported by our group [17]. This was derived from 3T3-L1 adipocytes stimulated with
insulin for specific times, and is herein termed ‘Insulin Dataset’. For each kinase within the
KSR knowledgebase, we searched for substrates within the Insulin Dataset. Out of the 5,873
regulated phosphosites in the Insulin Dataset, 456 were found in the knowledgebase, from
which we identified potential substrates for 150 kinases. Substrates could have multiple kinases
reported, with only some of these KSRs occurring within the experimental context.

Given that the phosphorylation state of a substrate reflects the activity of its corresponding
kinase, we can examine substrate phosphorylation profiles to gauge how the activity of their
kinase changes over time. Indeed, we previously observed that substrates of the same kinase are
more likely to co-cluster [17]. Thus, we developed a method for identifying such clusters in an
automated fashion.
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Furthermore, not all substrates in the KSR database may be phosphorylated in the data,
thus we can use these clusters to determine KSRs biologically relevant in the context of the
dataset analyzed. To this end, we extracted substrates by subjecting the temporal profiles of
substrates to tight clustering [23]. This clustering approach offers the advantage of identifying
stable tight clusters, and is therefore robust to noisy measurements.

For each kinase, tight clustering was performed in two steps, on different subsets of the
potential substrates. In the first step, we considered only ‘exclusive substrates’, substrates only
reported to be phosphorylated by one kinase. The resulting tight clusters formed the ‘core sub-
strates’ for the kinase. In the second step, tight clustering was performed on the time profiles of
all the potential substrates in the data. All tight clusters containing the core substrates were
subsequently taken as markers of kinase activity and form the characteristic temporal activa-
tion (CTA) profile for the kinase. For some kinases multiple exclusive clusters could be identi-
fied and in those cases all exclusive clusters were included in the analysis. The substrates that
form the CTA are listed in S1 Table.

This two-step clustering procedure identifies the activation pattern for each kinase in an
unbiased, automated fashion.

As an example, we sourced substrates from our KSR knowledgebase for the kinase Akt, an
intensely-studied kinase that is activated in response to insulin [24,25]. From the 222 Akt sub-
strates found in the KSR knowledgebase, 44 were identified in the Insulin Dataset. The first
clustering step identified 6 core substrates from 15 substrates that were exclusive to Akt (Fig
1A). Tight clustering with all potential substrates identified a single CTA consisting of 16 sub-
strates (Fig 1A). The other substrates did not cluster in 90% of the resampling-based tight clus-
tering runs (a cutoff recommended by the developers of the tight clustering algorithm [23]).
The Akt CTA was rapid, saturating within 30 s, as reported previously [17]. The excluded
potential substrates may involve additional regulation of their phosphorylation such as locali-
zation, may be phosphorylated by other kinases in this context, or may not have robust quanti-
tative temporal profiles in the mass spectrometry data analyzed.

We next expanded our analysis to explore substrates for other kinases in the Insulin
Dataset. To be included in the KSR-LIVE analysis, kinases had to have more than 2 exclusive
substrates; 23 kinases fulfilled these criteria, and using KSR-LIVE, we extracted CTAs for 9
of these 23 kinases (Akt, Insr, Cdk1/2, mTOR, Mapk1/3, Rps6kb1, Gsk3b, Prkaca, Eef2k), all
of which are implicated in insulin signaling [24,26–28]. No CTA profile could be found for
the remaining 14 kinases, because a tight cluster could not be identified from the exclusive
substrates. This can be attributed to kinases that do not respond robustly to insulin, or those
which currently have insufficient numbers of known exclusive substrates in the KSR
knowledgebase.

Among the kinases whose CTA profiles could be determined, their CTAs could be divided
into three distinct groups based on their temporal responses (Fig 1B). Akt and Insr were early
responders, being activated as early as 15 s after insulin addition. A slower group, consisting of
mTOR, Mapk1/3, Rps6kb1 and Cdk1/2, were activated between 5–10 min after insulin addi-
tion. In contrast, substrates of Gsk3b, Prkaca and Eef2k displayed reduced phosphorylation
upon insulin stimulation, indicating deactivation of these kinases. Gsk3b formed a special case
as it was reactivated again after 20 min. It is important to note that although the time profiles
of the individual substrates are not identical, the cluster time profiles can serve as a general
reflection of kinase activity–for instance, a kinase activated early in a time-course is more likely
to have its substrate cluster changing early as well. Thus, the temporal resolution of the Insulin
Dataset enabled KSR-LIVE to identify distinct CTA profiles of several kinases in an unbiased
fashion, without any prior knowledge of the kinases involved in insulin signaling.
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KSR-LIVE approximates manual curation of biochemically-validated
KSRs
We compared the identified biologically relevant substrates to a standard reference. We chose
substrates for Akt and mTOR [17] that had been manually curated previously as reference,
mTOR substrates were used as the negative set for calculation of Akt accuracy and vice versa.
The manually curated substrates for Akt and mTOR were selected giving preference towards
KSRs with high-quality supporting data from reductionist-based biochemical studies, or for
which there were multiple lines of evidence from different sources. The list of substrates created
by KSR-LIVE and the manually curated lists of substrates shared good overlap, they had 14
substrates in common for Akt and 8 for mTOR (S1A Fig). Some substrates were exclusive to
the manually curated lists because they were not included in the current databases, and there-
fore could not be extracted automatically. There were also substrates specific to the automated
sets likely excluded from manual lists due to the limitation associated with the curator’s knowl-
edge and/or to stringency of curation criteria. Nevertheless, the CTAs generated by manual
and automatically generated training sets were remarkably similar, with a correlation coeffi-
cient of 0.97 between the means of the sets.

Fig 1. Overview of KSR-LIVE. A) Flowchart of clustering procedure. Substrates for a kinase (for example Akt) are extracted from the
KSR knowledgebase and can either be exclusive (blue) or not (pink). In the first step tight clustering is performed on exclusive
substrates and core substrates (purple) identified. In the second step tight clustering is performed using all substrates and the
characteristic temporal activity of a kinase is identified. B) Heatmap of scaled log fold change of the characteristic temporal activity of 9
kinases over time. High log fold change is represented in red, low log fold change is shown in blue C) Table showing the time points
included in the accuracy analysis and the accuracy of using a database or KSR-LIVE for Akt and mTOR.

doi:10.1371/journal.pone.0157763.g001
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Further, we investigated the sensitivity of KSR-LIVE to the number of time points sampled
in the phosphoproteomics data by removing time points one at a time, and comparing the
identified CTA substrates to the manually curated substrates (Fig 1C). The KSR knowledgebase
baseline, the Rand accuracy of the KSR knowledgebase without any temporal information was
56% for mTOR and 63% for Akt, indicating that the KSR knowledgebase suffers from a high
number of false positives. Using KSR-LIVE to identify substrates increased the accuracy for
both Akt and mTOR to over 70% for all numbers of time points. Therefore, additional tempo-
ral information significantly improves the accurate identification of high quality KSRs.

Kinase phosphorylation temporal-profiles are often, but not always,
similar to their CTAs
Kinases are often regulated by phosphorylation so kinase phosphorylation is often used as a
proxy for activity. Thus, we compared the kinase CTAs to the phosphorylation profiles of the
kinases themselves (Fig 2). We expected the CTA would either co-segregate with or precede
kinase phosphorylation, the latter occurring if additional regulatory events were required to
mediate kinase activation. Phosphorylation of mTOR and Rps6kb1 at S2481/S2448 and S427/
S441/S447/T444, respectively followed a similar time profile as their substrates (Fig 2). In con-
trast, phosphorylation of Akt within its activation loop at T308 [29] occurred prior to phos-
phorylation on its S473 site and its substrates, consistent with the stepwise activation of Akt
[13]. Mapk1/3 displayed a different pattern, with phosphorylation of the kinase at its key regu-
latory sites T202/185, Y205/187 preceding any detectable substrate phosphorylation by 1 min.
For Eef2k, S78 phosphorylation decreases with the CTA.

In contrast, it is known that Eef2k and Gsk3b are deactivated upon phosphorylation at S78/
366 and S9, respectively [30–32]. Within the Insulin Dataset, it is evident that the effect of
phosphorylating these sites is not immediate, with the kinase CTA decreasing only when the

Fig 2. Scaled log fold change over time of kinase (shown in blue) and the corresponding CTA (shown in red, mean ± SD) for multiple
kinases.

doi:10.1371/journal.pone.0157763.g002
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inhibitory phosphorylation of Eef2k and Gsk3b reached their maximum. For Eef2k, S78 phos-
phorylation decreases with the CTA and for Gsk3B, the CTA profile increases after 10–20 min
whilst kinase phosphorylation on S9 is maintained.

In conclusion, we observed instances where the temporal relationship of phosphorylation of
the kinase does not align precisely with the phosphorylation of its substrates, suggesting that
kinase CTA profiles are a more suitable marker of kinase activity than phosphorylation of
kinases themselves.

KSR-LIVE can be applied to other temporal phosphoproteomics data
We next applied KSR-LIVE to another recently published temporal phosphoproteomics data-
set–a time-course of NGF stimulation in a human neuroblastoma cell line (SH-SY5Y) [33],
hereafter referred to as ‘NGF Dataset’. The analysis of these data by the authors included fuzzy
clustering, from which they were able to identify a cluster of early sustained responders (active
after 10 min and throughout the experiment). They also used GO term enrichment to identify
the involvement of Mitogen activated protein kinases (MAPKs) in NGF signaling.

KSR-LIVE was able to extract a CTA for Mapk1 (Erk2) as well as mTOR, and both were
active after 10 min and remained active throughout the experiment (Fig 3A). Activating sites
in Mapk1 and mTOR followed a similar temporal response to their CTAs (Fig 3B). In addition,
we also identified the CTA of Cdk1, whose substrates decreased in phosphorylation after 45
min, implying deactivation of Cdk1. The authors analysis pointed to mitotic cell cycle as one of
the regulated biological processes, which could be controlled by Cdk1 [27]. Although no phos-
phorylation sites on Cdk1 were present in the NGF Dataset, this could be because these sites
were not detected, or Cdk1 activity is inhibited by a mechanism independent of phosphoryla-
tion in this context. Nevertheless, both mTOR and Cdk1 have been previously implicated in
NGF signaling [34]. These kinases were not revealed in the original analysis, likely because
kinase predictions were made based on motifs using NetworKIN [14], which resolves two dif-
ferent kinases only if common consensus motifs are enriched in different clusters of substrates.
Our approach overcomes this, by using database knowledge as a starting point and performing
clustering considering (the substrates of) each kinase separately. Therefore, the KSR-LIVE
analysis tool is a valuable addition to the standard bioinformatics toolkit.

Novel substrate prediction using KSR-LIVE substrates as training set
and ensemble learning
In addition to revealing the dynamics of kinase activation, CTAs can also be used to train
kinase substrate prediction algorithms, for example the ensemble algorithm described

Fig 3. Analysis of Emdal et al. data using KSR-LIVE. A) Log fold change of MAPK1, MTOR and CDK1 CTAs (shown in red, mean ± SD). B) Log
fold change of kinase phosphorylation (blue) and the corresponding CTA (shown in red, mean ± SD) for multiple kinases.

doi:10.1371/journal.pone.0157763.g003
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previously [17,35]. To evaluate its utility here we compared the manually curated and automat-
ically generated KSR lists for predicting Akt and mTOR substrates, and found that substrates
predicted using either positive training sets was highly similar (correlation coefficient>0.96
for both Akt and mTOR) (S1B Fig). This highlights the utility of KSR-LIVE as a tool for curat-
ing a training set for the purpose of predicting novel KSRs using machine-learning methods.
We subsequently applied this approach to the kinases Akt and Rps6kb1, because as discussed
previously these closely related kinases typically cannot be distinguished by consensus motif
based prediction approaches. Firstly, Akt and Rps6kb1 belong to the AGC family and share the
same consensus motif (RxRxxS/T [12] Fig 4A). Further, targeted inhibition of Akt also results
in attenuated Rps6kb1 activity [13], since this kinase is downstream of Akt (Fig 4D). Despite
this, we found that substrates of these kinases can be clearly distinguished by their CTA (Fig
4B), and therefore used KSR-LIVE to provide automatically curated training sets and predict
putative novel substrates for Akt and Rps6kb1. We were able to use an ensemble prediction
algorithm [17] using the training sets which we were able to acquire for these kinases. Calculat-
ing a delta score between the ensemble learning prediction scores for the two kinases (i.e. score
difference for Akt and Rps6kb1) readily separated Akt and Rps6kb1 predicted substrates into
distinct clusters (Fig 4C). The prediction scores are provided in S2 Table.

We performed leave one out cross validation and achieved a specificity of 0.94+-0.06 for
Akt predictions. A candidate substrate of interest was Irs1 S265, which contains an RxRxxS/T
motif, and was reported to be an Rps6kb1 substrate [36], but based on its time profile we pre-
dicted it to be an Akt substrate (Fig 4B). Thus, we tested our prediction using a panel of inhibi-
tors, consisting of two inhibitors against Akt (MK-2206, GDC-0068) and one against
mTORC1 (Rapamycin), which is upstream of Rps6kb1 (Fig 4D). The Akt inhibitors block
phosphorylation of both classical Akt substrates (As160, Pras40) and Rps6kb1 substrates
(Rps6), whilst Rapamycin completely ablated S6K activity without inhibiting Akt (Fig 4E). The
phosphorylation of Irs1 S265 was similarly blocked by both Akt inhibitors, but only modestly
reduced by mTORC1 inhibition (Fig 4E and 4F). This implies that Akt plays a predominant
role in the phosphorylation of this site after insulin stimulation. In this example, KSR-LIVE
was able to automatically dissect Akt and Rps6kb1 activation based on in vivo phosphoproteo-
mics data and together with an ensemble learning algorithm enabled prediction of Irs1 S265 as
a biologically-relevant substrate of Akt.

Discussion
We conclude that using high resolution temporal phosphoproteomics data, KSR-LIVE can dis-
sect phosphorylation signaling within specific biological contexts. KSR-LIVE provides key
information on dynamic kinase activation and downstream signaling, and enables the predic-
tion of substrates and biological functions for kinases of interest.

Applying KSR-LIVE to the Insulin Dataset we were able to identify CTAs for 9 kinases. Six
of the kinases are activated/inhibited by phosphorylation which follows their CTA with the
exception of Mapk1/3. Although the known activating sites on Mapk1/3 are phosphorylated its
substrates follow with a time delay of 1 min. This may reflect additional steps in the regulation
of this kinase–for instance, phosphorylation of Mapk occurs in the cytoplasm, triggering its
nuclear import to target nuclear substrates [37].

Interestingly, for the kinases that are inhibited by phosphorylation, the inverse relationship
between kinase and substrate phosphorylation is not maintained for the whole time-course.
For Eef2k, S78 phosphorylation decreases with the CTA. Indeed, pS78 coincides with reduced
phosphorylation at S392/S396, which is found within the linker site and required for kinases to
access S78 [38]. However, S78 phosphorylation inhibits Eef2k activity [31]. Thus, the decrease
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Fig 4. Validation of IRS1 S265 as an AKT substrate. A) Comparison of AKT and RPS6KB1 consensus motif and IRS1 S265 site. B) CTA of
AKT (green) and RPS6KB1 (purple) and time profile of IRS1 S265 (blue). (CTA is depicted with mean ± SD) C) Scatter plot of RPS6KB1
prediction scores (y-axis) against RPS6KB1 prediction score—AKT prediction score (x-axis). AKT training substrates are shown in red and
RPS6KB1 training substrates are shown in blue. IRS1 S265 is shown in green. D) Insulin signaling via AKT and RPS6KB1. See main text for
details. E) 3T3-L1 adipocytes were stimulated with insulin alone or in the presence of inhibitors of AKT (MK, GDC) or mTORC1 (Rapa), after
which AKT and RPS6KB1 signaling were assessed byWestern blotting. Blots shown are representative of 3 separate experiments. F)
Quantification of IRS1 S265 phosphorylation from (E), depicted as mean ± SEM.

doi:10.1371/journal.pone.0157763.g004
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in the CTA demonstrates that additional regulatory sites, such as S366 (e.g. [32]), maintain the
inhibition of Eef2k activity in response to insulin. For GSK3b, the CTA profile increases after
10–20 min whilst kinase phosphorylation is maintained, suggesting factors other than S9 phos-
phorylation likely affect its activity in the context of insulin action in adipocytes. In summary,
the CTA provides insights into the temporal regulation of kinases and the CTA substrates are
an effective marker of kinase activity.

We calculated the accuracy of KSR-LIVE by comparing the substrates in the CTA of Akt
and mTOR to manually curated gold standard substrates and found that it can achieve an accu-
racy of over 70% for both kinases offering a significant improvement over the accuracy of the
KSR knowledgebase alone. Interestingly, the best accuracy was achieved when the peak of acti-
vation was the second time point (30 s for Akt and 5 min for mTOR). Thus, it is crucial to mea-
sure phosphorylation at the peak of activation. Studies where the time-course begins after this
point will therefore likely miss early activation events, decreasing the accuracy in predicting
substrates of early-activated kinases. To achieve highest accuracy it is crucial to study time
points that center on the peak of activation of the kinases of interest.

In addition to mapping kinase activity, the extracted kinase CTAs greatly facilitate the pre-
diction of new substrates by providing an automatically generated training set which can be
used by learning algorithms, eliminating the resource-intensive and curator-biased process of
manually generating a positive training set. Where expert knowledge about substrates is avail-
able, manually curated substrates can be added to the automatically generated list, adding
more power to the KSR prediction.

The primary advantage of KSR-LIVE over KSR prediction methods using consensus motifs
is the consideration of biological context, utilizing biologically relevant KSRs in the training
set. This is achieved using time-series data, on the premise that kinase activity can be inferred
from the phosphorylation of its substrates. The substrates are not phosphorylated with identi-
cal time profiles, due to numerous factors such as copy number, localization and additional
regulatory mechanisms, but they may be clustered together to distinguish one kinase CTA
from another (Figs 1 and 2). For instance, the Akt CTA rises considerably faster than the
Rps6kb1 CTA, enabling us to unambiguously identify the phosphorylation of IRS1 S265 as Akt
target even though these kinases share the same motif (Fig 4).

In this context, network inference would be a powerful tool to uncover network topology.
However, while the datasets used here possessed many time points and proteome coverage to
enable clustering, we could not utilize Bayesian inference because the number of data points
was insufficient (data not shown). While other studies have demonstrated this approach is able
to elucidate signaling topology, only a small number of phosphorylation sites were considered
in their networks [39]–substantially more time points, preferably with several pharmacological
or genetic perturbations, would be required to uncover the signaling network on an omic scale.

Generalizing substrate profiles using clustering enables simple and efficient measurement of
kinase CTAs (Figs 2 and 3). Once several kinases of interest have been identified, their regula-
tion can be subsequently studied at a mechanistic level. For instance, there are discrepancies
between kinase and substrate phosphorylation in the Insulin Dataset; such intricacies may be
studied using ordinary differential equation modeling [40,41] with targeted experiments con-
taining focused time-points and inhibitors tailored to the kinases of interest. Thus, KSR-LIVE
offers the means to identify patterns in kinase activity that can be subject to further
investigation.

The KSR knowledgebase covers a significant portion of the kinome. As it expands,
KSR-LIVE will not only be able to assess the activity of additional kinases, but shed more
insight into their regulation. For instance, we identified a single cluster for each kinase in the
Insulin Dataset, but knowledge of additional KSRs may reveal several substrate clusters for
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each kinase. Overall, KSR-LIVE has the potential to be included in the standard analysis work-
flow to study temporal high-throughput signal transduction data. This will further improve
our understanding of complex diseases caused by dysregulated signaling, including cancer and
type 2 diabetes. KSR-LIVE is publicly available as an R package (https://cran.r-project.org/
package=ksrlive).

Materials and Methods

Integrating databases
The information from four databases were combined into one integrated ‘KSR knowledgebase’.
The databases used were: PhosphoSitePlus (retrieved 06/2014), PhosphoELM (release 9.0),
PhosphoPOINT (04/2014) and Human Protein Reference Database (release 9). Data from
human and mouse was used, and the mouse proteins were mapped to human proteins using
the Inparanoid ortholog database (version 8.0). The integrated KSR knowledgebase consisted
of 11,666 interactions between 396 kinases and 8,035 phosphosites on 2,431 proteins. Due to
redundant UniProt IDs referring to the same protein, Blast (version 2.2.30) was used to map
between the integrated database and phosphoproteomics data. The sequences of the proteins
were downloaded from UniProt 10/2014.

Identification of biologically relevant site specific KSRs
Phosphosites with no missing values in two or more replicates were used for clustering. The
clustering consisted of two steps, first with only exclusive substrates and in a second step using
all available kinase substrates. Both taken together resulted in the final kinase activity marker
substrates. {Formatting Citation}

In the first step, substrates exclusive to a kinase were extracted from the integrated KSR
knowledgebase and clustered using tight clustering [23]. The user can choose to provide a
knowledgebase, see the ksrlive R package for further details. Only exclusive substrates were
chosen to assure that the temporal response is the result of one kinase and not multiple ones.
The default parameters were used based on the recommendation by Tseng et al. in the tight-
clust package documentation [42] and the total number of resamplings was set to 100. If a
kinase had two or fewer substrates, clustering could not be performed. Background data (points
sampled from a uniform distribution in the range of the original data) was added to the exclu-
sive substrates to ensure that if all substrates followed the same time profile they would not be
forced apart by the clustering algorithm. The clustered substrates were tested for differential
regulation using a 1.5 fold cut off (in two out of three replicates for data from Humphrey et al.
and the mean for data from Emdal et al.). In the Humphrey et al. data only substrates with
multiple replicates were analyzed to assure reliability of the time profiles. The resulting tight
clusters formed the core substrates for a kinase. In the second step, clustering was performed
using all available substrates for a kinase. All tight clusters containing the original exclusive
substrate clusters, were subsequently used to calculate the mean and standard deviation for the
characteristic temporal activation profile for the kinase.

Cell culture
3T3-L1 fibroblasts were maintained in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% (v/v) Foetal Bovine Serum (Life Technologies) and GlutaMAX (Life Tech-
nologies) at 37° C with 10% CO2. Differentiation was induced at 100% confluence by addition
of 250 nM dexamethasone, 350 nM insulin, 0.5 mM 3-isobutyl-1-methylxanthine and 400 nM
biotin for 72 h. Cells were then incubated in media containing 350 nM insulin for a further 72
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h, and refreshed with naïve media every 2 d after. Adipocytes were used between days 10–12
after initiation of differentiation.

Assessment of cellular signaling by Western blotting
3T3-L1 adipocytes in12-well plates were washed twice with PBS and incubated with serum-
free DMEM containing GlutaMax and 0.2% (w/v) BSA. After 1.5 h, cells were treated for 30
min with 10 μMMK2206 (MK, Selleck Chemicals), 10 μMGDC-0068 (GDC, Selleck Chemi-
cals), 100 nM rapamycin (Rapa, Sigma-Aldrich) or solvent control. Cells were then stimulated
where indicated with 100 nM insulin (Sigma-Aldrich) for 20 min before being washed thrice
with cold phosphate-buffered saline (PBS) on ice and lysed with 1% (w/v) sodium dodecylsul-
fate (SDS) in PBS. Lysates were sonicated and subjected to SDS-PAGE andWestern blotting as
described previously [17]. Antibodies used were against phosphorylated (T308, S473) and total
Akt (Cell Signaling Technologies), phosphorylated (T389) and total Rps6kb1 (Cell Signaling
Technologies), phosphorylated (T246) PRAS40 (Cell Signaling Technologies), phosphorylated
(S235/6) RPS6 (Cell Signaling Technologies), phosphorylated (S265) IRS1 (Santa Cruz), and
14-3-3 (Santa Cruz) as a loading control.

Supporting Information
S1 Fig. Comparison of automatic training set curated by KSR-LIVE and manually curated
training set. A) Overlap of Akt (left) and mTOR (right) training sets. B) Scatter plot of predic-
tion scores using the KSR-LIVE training set (y-axis) and the manually curated training set (x-
axis). KSR-LIVE training set is shown in blue, the manually curated training set in green and
sites that are contained in both are shown in red. Dashed lines represent the top 50 prediction
score threshold.
(TIF)

S1 Table. Identified kinase substrate relationships. This table lists all substrates that make up
the characteristic temporal response of a kinase.
(XLSX)

S2 Table. Prediction score for Akt and Rps6kb1. Table of all sites and the kinase prediction
score for Akt and Rps6kb1 as well as the sites used as training sets.
(XLSX)
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