12 research outputs found

    Decreased Pulmonary Function Measured in Children Exposed to High Environmental Relative Moldiness Index Homes

    Get PDF
    Background: Exposures to water-damaged homes/buildings has been linked to deficits in respiratory health. However, accurately quantifying this linkage has been difficult because of the methods used to assess water damage and respiratory health. Purpose: The goal of this analysis was to determine the correlation between the water-damage, as defined by the Environmental Relative Moldiness Index (ERMI) value in an asthmatic child’s home, and the child’s pulmonary function measured by spirometry, “forced expiratory volume in one second, percent predicted” or FEV1%. Methods: This analysis utilized data obtained from the “Heads-off Environmental Asthma in Louisiana” (HEAL) study. The children (n= 109), 6 to 12 years of age, who had completed at least one spirometry evaluation and a dust sample collected for ERMI analysis from the home at approximately the same time as the spirometry testing, were included in the analysis. Statistical evaluation of the correlation between ERMI values and FEV1% was performed using the Spearman’s Rank Correlation analysis. The relationship between ERMI values and FEV1% was performed using B-spline regression. Results: The average ERMI value in the HEAL study homes was 7.3. For homes with ERMI values between 2.5 and 15, there was a significant inverse correlation with the child’s lung function or FEV1% measurement (Spearman’s rho -0.23; p= 0.03), i.e. as the ERMI value increased, the FEV1% value decreased. Conclusions: Measures of water-damage (the ERMI) and clinical assessments of lung function (FEV1%) provided a quantitative assessment of the impact of water-damaged home exposures on children’s respiratory health

    Mold and Endotoxin Levels in the Aftermath of Hurricane Katrina: A Pilot Project of Homes in New Orleans Undergoing Renovation

    Get PDF
    BACKGROUND: After Hurricane Katrina, many New Orleans homes remained flooded for weeks, promoting heavy microbial growth. OBJECTIVES: A small demonstration project was conducted November 2005–January 2006 aiming to recommend safe remediation techniques and safe levels of worker protection, and to characterize airborne mold and endotoxin throughout cleanup. METHODS: Three houses with floodwater lines between 0.3 and 2 m underwent intervention, including disposal of damaged furnishings and drywall, cleaning surfaces, drying remaining structure, and treatment with a biostatic agent. We measured indoor and outdoor bioaerosols before, during, and after intervention. Samples were analyzed for fungi [culture, spore analysis, polymerase chain reaction (PCR)] and endotoxin. In one house, real-time particle counts were also assessed, and respirator-efficiency testing was performed to establish workplace protection factors (WPF). RESULTS: At baseline, culturable mold ranged from 22,000 to 515,000 colony-forming units/m(3), spore counts ranged from 82,000 to 630,000 spores/m(3), and endotoxin ranged from 17 to 139 endotoxin units/m(3). Culture, spore analysis, and PCR indicated that Penicillium, Aspergillus, and Paecilomyces predominated. After intervention, levels of mold and endotoxin were generally lower (sometimes, orders of magnitude). The average WPF against fungal spores for elastomeric respirators was higher than for the N-95 respirators. CONCLUSIONS: During baseline and intervention, mold and endotoxin levels were similar to those found in agricultural environments. We strongly recommend that those entering, cleaning, and repairing flood-damaged homes wear respirators at least as protective as elastomeric respirators. Recommendations based on this demonstration will benefit those involved in the current cleanup activities and will inform efforts to respond to future disasters

    High Temperature Structural Foam

    No full text
    The Aerospace Industry is experiencing growing demand for high performance polymer foam. The X-33 program needs structural foam insulation capable of retaining its strength over a wide range of environmental conditions. The High Speed Research Program has a need for low density core splice and potting materials. This paper reviews the state of the art in foam materials and describes experimental work to fabricate low density, high shear strength foam which can withstand temperatures from -220 C to 220 C. Commercially available polymer foams exhibit a wide range of physical properties. Some with densities as low as 0.066 g/cc are capable of co-curing at temperatures as high as 182 C. Rohacell foams can be resin transfer molded at temperatures up to 180 C. They have moduli of elasticity of 0.19 MPa, tensile strengths of 3.7 Mpa and compressive strengths of 3.6 MPa. The Rohacell foams cannot withstand liquid hydrogen temperatures, however Imi-Tech markets Solimide (trademark) foams which withstand temperatures from -250 C to 200 C, but they do not have the required structural integrity. The research activity at NASA Langley Research Center focuses on using chemical blowing agents to produce polyimide thermoplastic foams capable of meeting the above performance requirements. The combination of blowing agents that decompose at the minimum melt viscosity temperature together with plasticizers to lower the viscosity has been used to produce foams by both extrusion and oven heating. The foams produced exhibit good environmental stability while maintaining structural properties
    corecore