12,561 research outputs found

    Self heating and nonlinear current-voltage characteristics in bilayer graphene

    Get PDF
    We demonstrate by experiments and numerical simulations that the low-temperature current-voltage characteristics in diffusive bilayer graphene (BLG) exhibit a strong superlinearity at finite bias voltages. The superlinearity is weakly dependent on doping and on the length of the graphene sample. This effect can be understood as a result of Joule heating. It is stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG is more sensitive to temperature due to the higher density of electronic states at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.

    Shot noise and conductivity at high bias in bilayer graphene: Signatures of electron-optical phonon coupling

    Get PDF
    We have studied electronic conductivity and shot noise of bilayer graphene (BLG) sheets at high bias voltages and low bath temperature T0=4.2T_0=4.2 K. As a function of bias, we find initially an increase of the differential conductivity, which we attribute to self-heating. At higher bias, the conductivity saturates and even decreases due to backscattering from optical phonons. The electron-phonon interactions are also responsible for the decay of the Fano factor at bias voltages V>0.1V>0.1 V. The high bias electronic temperature has been calculated from shot noise measurements, and it goes up to 1200\sim1200 K at V=0.75V=0.75 V. Using the theoretical temperature dependence of BLG conductivity, we extract an effective electron-optical phonon scattering time τeop\tau_{e-op}. In a 230 nm long BLG sample of mobility μ=3600\mu=3600 cm2^2V1^{-1}s1^{-1}, we find that τeop\tau_{e-op} decreases with increasing voltage and is close to the charged impurity scattering time τimp=60\tau_{imp}=60 fs at V=0.6V=0.6 V.Comment: 7 pages, 7 figures. Extended version of the high bias part of version 1. The low bias part is discussed in arXiv:1102.065

    An accurate formula for the period of a simple pendulum oscillating beyond the small-angle regime

    Full text link
    A simple approximation formula is derived here for the dependence of the period of a simple pendulum on amplitude that only requires a pocket calculator and furnishes an error of less than 0.25% with respect to the exact period. It is shown that this formula describes the increase of the pendulum period with amplitude better than other simple formulas found in literature. A good agreement with experimental data for a low air-resistance pendulum is also verified and it suggests, together with the current availability/precision of timers and detectors, that the proposed formula is useful for extending the pendulum experiment beyond the usual small-angle oscillations.Comment: 15 pages and 4 figures. to appear in American Journal of Physic

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Ultradiscretization of the solution of periodic Toda equation

    Full text link
    A periodic box-ball system (pBBS) is obtained by ultradiscretizing the periodic discrete Toda equation (pd Toda eq.). We show the relation between a Young diagram of the pBBS and a spectral curve of the pd Toda eq.. The formula for the fundamental cycle of the pBBS is obtained as a colloraly.Comment: 41 pages; 7 figure

    Fluorescent visualization of a spreading surfactant

    Full text link
    The spreading of surfactants on thin films is an industrially and medically important phenomenon, but the dynamics are highly nonlinear and visualization of the surfactant dynamics has been a long-standing experimental challenge. We perform the first quantitative, spatiotemporally-resolved measurements of the spreading of an insoluble surfactant on a thin fluid layer. During the spreading process, we directly observe both the radial height profile of the spreading droplet and the spatial distribution of the fluorescently-tagged surfactant. We find that the leading edge of spreading circular layer of surfactant forms a Marangoni ridge in the underlying fluid, with a trough trailing the ridge as expected. However, several novel features are observed using the fluorescence technique, including a peak in the surfactant concentration which trails the leading edge, and a flat, monolayer-scale spreading film which differs from concentration profiles predicted by current models. Both the Marangoni ridge and surfactant leading edge can be described to spread as RtδR \propto t^{\delta}. We find spreading exponents, δH0.30\delta_H \approx 0.30 and δΓ0.22\delta_\Gamma \approx 0.22 for the ridge peak and surfactant leading edge, respectively, which are in good agreement with theoretical predictions of δ=1/4\delta = 1/4. In addition, we observe that the surfactant leading edge initially leads the peak of the Marangoni ridge, with the peak later catching up to the leading edge

    Additions to the Flora of Cedar County, Iowa

    Get PDF
    A survey of the vascular plants of Cedar County, Iowa, was made by the senior author during the growing season of 1950. A previous paper (Fay, 1952) presented an annotated list of 775 species found in the area studied. Subsequent collecting trips by the authors of this paper have resulted in the discovery of additional species. Several misidentifications caused errors in the previous account; these are corrected here. Introduced species are marked by an asterisk. The present paper brings up to date the number of species known to occur in Cedar County. It also describes the various ecological habitats of the county by listing characteristic species found in each

    Functional representation of the Volterra hierarchy

    Full text link
    In this paper I study the functional representation of the Volterra hierarchy (VH). Using the Miwa's shifts I rewrite the infinite set of Volterra equations as one functional equation. This result is used to derive a formal solution of the associated linear problem, a generating function for the conservation laws and to obtain a new form of the Miura and Backlund transformations. I also discuss some relations between the VH and KP hierarchy.Comment: 17 pages, submitted to Journal of Nonlinear Mathematical Physic

    Biodiversity and Ecosystem Health of the Aldabra Group, Southern Seychelles: Scientific Report to the Government of Seychelles.

    Get PDF
    National Geographic's Pristine Seas project, in collaboration with the government of the Seychelles, the Island Conservation Society (ICS), the Seychelles Islands Foundation (SIF), and the Waitt Foundation, conducted an expedition to explore the poorly known marine environment around these islands. The goals were to assess the biodiversity of the nearshore marine environment and to survey the largely unknown deep sea realm. The data collected contribute to the marine spatial planning of the Seychelles, in particular the creation of large marine reserves
    corecore