10,653 research outputs found

    Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package

    Get PDF
    For right-censored data perhaps the most commonly used tests are weighted logrank tests, such as the logrank and Wilcoxon-type tests. In this paper we review several generalizations of those weighted logrank tests to interval-censored data and present an R package, interval, to implement many of them. The interval package depends on the perm package, also presented here, which performs exact and asymptotic linear permutation tests. The perm package performs many of the tests included in the already available coin package, and provides an independent validation of coin. We review analysis methods for interval-censored data, and we describe and show how to use the interval and perm packages.

    Self heating and nonlinear current-voltage characteristics in bilayer graphene

    Get PDF
    We demonstrate by experiments and numerical simulations that the low-temperature current-voltage characteristics in diffusive bilayer graphene (BLG) exhibit a strong superlinearity at finite bias voltages. The superlinearity is weakly dependent on doping and on the length of the graphene sample. This effect can be understood as a result of Joule heating. It is stronger in BLG than in monolayer graphene (MLG), since the conductivity of BLG is more sensitive to temperature due to the higher density of electronic states at the Dirac point.Comment: 9 pages, 7 figures, REVTeX 4.

    Decoherence processes in a current biased dc SQUID

    Full text link
    A current bias dc SQUID behaves as an anharmonic quantum oscillator controlled by a bias current and an applied magnetic flux. We consider here its two level limit consisting of the two lower energy states | 0 \right> and | 1 \right>. We have measured energy relaxation times and microwave absorption for different bias currents and fluxes in the low microwave power limit. Decoherence times are extracted. The low frequency flux and current noise have been measured independently by analyzing the probability of current switching from the superconducting to the finite voltage state, as a function of applied flux. The high frequency part of the current noise is derived from the electromagnetic environment of the circuit. The decoherence of this quantum circuit can be fully accounted by these current and flux noise sources.Comment: 4 pages, 4 figure

    Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt

    Full text link
    We calculate the effect of scattering on the static, exchange enhanced, spin susceptibility and show that in particular spin orbit scattering leads to a reduction of the giant moments and spin glass freezing temperature due to dilute magnetic impurities. The harmful spin fluctuation contribution to the intra-grain pairing interaction is strongly reduced opening the way for BCS superconductivity. We are thus able to explain the superconducting and magnetic properties recently observed in granular Pt as due to scattering effects in single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter

    Exact and Asymptotic Weighted Logrank Tests for Interval Censored Data: The interval R Package

    Get PDF
    For right-censored data perhaps the most commonly used tests are weighted logrank tests, such as the logrank and Wilcoxon-type tests. In this paper we review several generalizations of those weighted logrank tests to interval-censored data and present an R package, interval, to implement many of them. The interval package depends on the perm package, also presented here, which performs exact and asymptotic linear permutation tests. The perm package performs many of the tests included in the already available coin package, and provides an independent validation of coin. We review analysis methods for interval-censored data, and we describe and show how to use the interval and perm packages

    Impact of disorder on unconventional superconductors with competing ground states

    Full text link
    Non-magnetic impurities are known as strong pair breakers in superconductors with pure d-wave pairing symmetry. Here we discuss d-wave states under the combined influence of impurities and competing instabilities, such as pairing in a secondary channel as well as lattice symmetry breaking. Using the self-consistent T-matrix formalism, we show that disorder can strongly modify the competition between different pairing states. For a d-wave superconductor in the presence of a subdominant local attraction, Anderson's theorem implies that disorder always generates an s-wave component in the gap at sufficiently low temperature, even if a pure d_{x^2-y^2} order parameter characterizes the clean system. In contrast, disorder is always detrimental to an additional d_{xy} component. This qualitative difference suggests that disorder can be used to discriminate among different mixed-gap structures in high-temperature superconductors. We also investigate superconducting phases with lattice symmetry breaking in the form of bond order, and show that the addition of impurities quickly leads to the restoration of translation invariance. Our results highlight the importance of controlling disorder for the observation of competing order parameters in cuprates.Comment: 13 pages, 10 figure

    Isotropisation of Generalized Scalar-Tensor theory plus a massive scalar field in the Bianchi type I model

    Full text link
    In this paper we study the isotropisation of a Generalized Scalar-Tensor theory with a massive scalar field. We find it depends on a condition on the Brans-Dicke coupling function and the potential and show that asymptotically the metric functions always tend toward a power or exponential law of the proper time. These results generalise and unify these of De Sitter in the case of a cosmological constant and of Cooley and Kitada in the case of an exponential potential.Comment: 10 page

    Energy relaxation in graphene and its measurement with supercurrent

    Get PDF
    We study inelastic energy relaxation in graphene for low energies to find out how electrons scatter with acoustic phonons and other electrons. By coupling the graphene to superconductors, we create a strong dependence of the measured signal, i.e.,\ critical Josephson current, on the electron population on different energy states. Since the relative population of high- and low-energy states is determined by the inelastic scattering processes, the critical current becomes an effective probe for their strength. We argue that the electron-electron interaction is the dominant relaxation method and, in our model of two-dimensional electron-electron scattering, we find a scattering time τe−e=5...13\tau_{e-e}=5... 13 ps at T=500 mK, 1-2 orders of magnitude smaller than predicted by theory.Comment: 10 pages, 13 figures submitted to Physical Review
    • …
    corecore