32 research outputs found

    Microcirculatory alterations induced by sedation in intensive care patients. Effects of midazolam alone and in association with sufentanil

    Get PDF
    INTRODUCTION: Sedation is widely used in intensive care unit (ICU) patients to limit the risk of pulmonary barotrauma and to decrease oxygen needs. However, adverse effects of cc5128sedation have not been fully evaluated; in particular, effects of benzodiazepine and opiates on microcirculation have not been extensively studied. The aim of this study was to evaluate the microcirculatory effects of a sedation protocol commonly prescribed in the ICU. METHODS: Ten non-septic patients under controlled ventilation requiring sedation for therapeutic purposes were enrolled in a prospective observational study conducted in an ICU of a university hospital. Sedation was conducted in two successive steps: first, each patient received midazolam (0.1 mg/kg per hour after a bolus of 0.05 mg/kg, then adapted to reach a Ramsay score of between 3 and 5). Second, after one hour, sufentanil was added (0.1 μg/kg per hour after a bolus of 0.1 μg/kg). Arterial pressure, heart rate, cardiac output determined by transthoracic impedance, transcutaneous oxygen (tcPO(2)) and carbon dioxide (tcPCO(2)) pressures, and microcirculatory blood flow determined by laser Doppler flowmetry at rest and during a reactive hyperaemia challenge were measured before sedation (NS period), one hour after midazolam infusion (H period), and one hour after midazolam-sufentanil infusion (HS period). RESULTS: Arterial pressure decreased in both sedation periods, but heart rate, cardiac output, tcPO(2), and tcPCO(2 )remained unchanged. In both sedation periods, microcirculatory changes occurred with an increase in cutaneous blood flow at rest (H period: 207 ± 25 perfusion units [PU] and HS period: 205 ± 25 PU versus NS period: 150 ± 22 PU, p < 0.05), decreased response to ischaemia (variation of blood flow to peak: H period: 97 ± 16 PU and HS period: 73 ± 9 PU versus NS period: 141 ± 14 PU, p < 0.05), and attenuation of vasomotion. CONCLUSION: Sedation with midazolam or a combination of midazolam and sufentanil induces a deterioration of vasomotion and microvascular response to ischaemia, raising the question of whether this effect may further alter tissue perfusion when already compromised, as in septic patients

    Angiotensin II for the Treatment of Vasodilatory Shock

    Get PDF
    BACKGROUND Vasodilatory shock that does not respond to high-dose vasopressors is associated with high mortality. We investigated the effectiveness of angiotensin II for the treatment of patients with this condition. METHODS We randomly assigned patients with vasodilatory shock who were receiving more than 0.2 mu g of norepinephrine per kilogram of body weight per minute or the equivalent dose of another vasopressor to receive infusions of either angiotensin II or placebo. The primary end point was a response with respect to mean arterial pressure at hour 3 after the start of infusion, with response defined as an increase from baseline of at least 10 mm Hg or an increase to at least 75 mm Hg, without an increase in the dose of background vasopressors. RESULTS A total of 344 patients were assigned to one of the two regimens; 321 received a study intervention (163 received angiotensin II, and 158 received placebo) and were included in the analysis. The primary end point was reached by more patients in the angiotensin II group (114 of 163 patients, 69.9%) than in the placebo group (37 of 158 patients, 23.4%) (odds ratio, 7.95; 95% confidence interval [CI], 4.76 to 13.3; P<0.001). At 48 hours, the mean improvement in the cardiovascular Sequential Organ Failure Assessment (SOFA) score (scores range from 0 to 4, with higher scores indicating more severe dysfunction) was greater in the angiotensin II group than in the placebo group (-1.75 vs. -1.28, P = 0.01). Serious adverse events were reported in 60.7% of the patients in the angiotensin II group and in 67.1% in the placebo group. Death by day 28 occurred in 75 of 163 patients (46%) in the angiotensin II group and in 85 of 158 patients (54%) in the placebo group (hazard ratio, 0.78; 95% CI, 0.57 to 1.07; P = 0.12). CONCLUSIONS Angiotensin II effectively increased blood pressure in patients with vasodilatory shock that did not respond to high doses of conventional vasopressors. (Funded by La Jolla Pharmaceutical Company; ATHOS-3 ClinicalTrials.gov number, NCT02338843.)Peer reviewe

    Acute delirium in a critically ill patient may be a wolf in sheep’s clothing

    No full text
    Acute delirium is a commonly encountered problem in the intensive care unit (ICU), which has a myriad of causes and contributes to poor outcomes. We present the case of an alcoholic critically ill patient who developed prolonged acute ICU delirium wrongly diagnosed as sedation and alcohol withdrawal. Protracted vomiting, swallowing disorders and continuous aspirations prevented him from enteral feeding and discontinuation of mechanical ventilation. After several days, it became clear that the patient had been misdiagnosed. Fortunately, nystagmus and ophthalmoplegia then allowed the recognition of Wernicke’s encephalopathy, confirmed by cerebral MRIs. After thiamine supplementation, his state improved but he was discharged only on day 32. Wernicke’s encephalopathy is an acute reversible neuropsychiatric emergency, which is falsely considered as uncommon, and is largely misdiagnosed, especially in critically ill patients. Thiamine should be systematically given to all critically ill alcoholic patients, especially those with protracted vomiting

    Involvement of Mitochondrial Disorders in Septic Cardiomyopathy

    No full text
    Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. It remains a leading cause of death worldwide, despite the development of various therapeutic strategies. Cardiac dysfunction, also referred to as septic cardiomyopathy, is a frequent and well-described complication of sepsis and associated with worse clinical outcomes. Recent research has increased our understanding of the role of mitochondrial dysfunction in the pathophysiology of septic cardiomyopathy. The purpose of this review is to present this evidence as a coherent whole and to highlight future research directions
    corecore