16 research outputs found

    Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery

    Get PDF
    The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo - FAPESP (Sao Paulo, Brazil)Laboratorio de Espectroscopia e Calorimetria (LEC), Laboratorio Nacional de Biociencias - LNBio (Campinas, Brazil

    Vapd In Xylella Fastidiosa Is A Thermostable Protein With Ribonuclease Activity.

    Get PDF
    Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.10e014576

    Recombinant protein-based nanocarriers and their association with cationic liposomes: Characterization and in vitro evaluation

    No full text
    A major bottleneck in the development of efficient protocols for gene therapy and DNA vaccination is the low efficiency of gene transfer by non-viral vectors. This is mainly attributed to the fact that, during the traffic to target cell nuclei, vectors must overcome a series of enzymatic, physical, and diffusional barriers. The objective of this work was the development and characterization of new multifunctional non-viral vectors, based on proteins and lipids, that are able to efficiently deliver the foreign plasmid DNA (pDNA) to the nucleus of mammalian cells. A model pDNA containing the reporter gene GFP was complexed to protamine or the recombinant modular protein T-Rp3 to form binary complexes. In addition, we studied the ability of the cationic liposome composed of EPC/DOPE/DOTAP to encapsulate the binary complexes to form pseudo-ternary complexes (pDNA/protein/liposome). Characterization of the complexes were performed by dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM) and pDNA accessibility assay. The assays revealed that both proteins were able to condense pDNA and form positively charged complexes, that could be efficiently encapsulated, leading to the formation of pDNA/protein/liposome complexes. Transfection studies using HeLa cells indicated that pDNA/protein formed by T-Rp3 were far more efficient for pDNA delivery than protamine. The complexes formed by pDNA/T-Rp3/liposome presented the highest transfection level (25%). On the other hand, cytotoxicity assays showed a significant decrease on cell viability when using pDNA/T-Rp3/liposome, indicating that the association of T-Rp3 with liposome significantly increase the delivery efficiency whilst prompting a proportional negative impact on cytotoxicity. A better understanding of the mechanisms of cell uptake and intracellular trafficking regarding the synergic effect between proteins and lipids in these vectors may, in the near future, lead to the development of more efficient non-viral vectors able to mimic the abilities of viral nucleic acid delivery513110CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP471971/2011-1; 444412/2014-02007/58323-9; 2013/23780-1; 2012/23143-9; 2013/05969-

    Development of a recombinant fusion protein based on the dynein light chain LC8 for non-viral gene delivery

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)The low efficiency of gene transfer is a recurrent problem in DNA vaccine development and gene therapy studies using non-viral vectors such as plasmid DNA (pDNA). This is mainly due to the fact that during their traffic to the target cell's nuclei, plasmid vectors must overcome a series of physical, enzymatic and diffusional barriers. The main objective of this work is the development of recombinant proteins specifically designed for pDNA delivery, which take advantage of molecular motors like dynein, for the transport of cargos from the periphery to the centrosome of mammalian cells. A DNA binding sequence was fused to the N-terminus of the recombinant human dynein light chain LC8. Expression studies indicated that the fusion protein was correctly expressed in soluble form using E. coli BL21(DE3) strain. As expected, gel permeation assays found the purified protein mainly present as dimers, the functional oligomeric state of LC8. Gel retardation assays and atomic force microscopy proved the ability of the fusion protein to interact and condense pDNA. Zeta potential measurements indicated that LC8 with DNA binding domain (LD4) has an enhanced capacity to interact and condense pDNA, generating positively charged complexes. Transfection of cultured HeLa cells confirmed the ability of the LD4 to facilitate pDNA uptake and indicate the involvement of the retrograde transport in the intracellular trafficking of pDNA: LD4 complexes. Finally, cytotoxicity studies demonstrated a very low toxicity of the fusion protein vector, indicating the potential for in vivo applications. The study presented here is part of an effort to develop new modular shuttle proteins able to take advantage of strategies used by viruses to infect mammalian cells, aiming to provide new tools for gene therapy and DNA vaccination studies. (C) 2012 Elsevier B.V. All rights reserved.1592222231Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP

    A novel protein refolding protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coil

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8 M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa. (C) 2012 Elsevier Inc. All rights reserved.822284289Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Centro Nacional de Pesquisa em Energia e Materiais (CNPEM)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq

    A novel protein refolding protocol for the solubilization and purification of recombinant peptidoglycan-associated lipoprotein from Xylella fastidiosa overexpressed in Escherichia coil

    No full text
    Xylella fastidiosa is a Gram-negative xylem-limited plant pathogenic bacterium responsible for several economically important crop diseases. Here, we present a novel and efficient protein refolding protocol for the solubilization and purification of recombinant X. fastidiosa peptidoglycan-associated lipoprotein (XfPal). Pal is an outer membrane protein that plays important roles in maintaining the integrity of the cell envelope and in bacterial pathogenicity. Because Pal has a highly hydrophobic N-terminal domain, the heterologous expression studies necessary for structural and functional protein characterization are laborious once the recombinant protein is present in inclusion bodies. Our protocol based on the denaturation of the XfPal-enriched inclusion bodies with 8 M urea followed by buffer-exchange steps via dialysis proved effective for the solubilization and subsequent purification of XfPal, allowing us to obtain a large amount of relatively pure and folded protein. In addition, XfPal was biochemically and functionally characterized. The method for purification reported herein is valuable for further research on the three-dimensional structure and function of Pal and other outer membrane proteins and can contribute to a better understanding of the role of these proteins in bacterial pathogenicity, especially with regard to the plant pathogen X. fastidiosa. (C) 2012 Elsevier Inc. All rights reserved

    Initial Biochemical And Functional Characterization Of A 5'-nucleotidase From Xylella Fastidiosa Related To The Human Cytosolic 5'-nucleotidase I.

    No full text
    The 5'-nucleotidases constitute a ubiquitous family of enzymes that catalyze either the hydrolysis or the transfer of esterified phosphate at the 5' position of nucleoside monophosphates. These enzymes are responsible for the regulation of nucleotide and nucleoside levels in the cell and can interfere with the phosphorylation-dependent activation of nucleoside analogs used in therapies targeting solid tumors and viral infections. In the present study, we report the initial biochemical and functional characterization of a 5'-nucleotidase from Xylella fastidiosa that is related to the human cytosolic 5'-nucleotidase I. X. fastidiosa is a plant pathogenic bacterium that is responsible for numerous economically important crop diseases. Biochemical assays confirmed the phosphatase activity of the recombinant purified enzyme and revealed metal ion dependence for full enzyme activity. In addition, we investigated the involvement of Xf5'-Nt in the formation of X. fastidiosa biofilms, which are structures that occlude the xylem vessels of susceptible plants and are strictly associated with bacterial pathogenesis. Using polyclonal antibodies against Xf5'-Nt, we observed an overexpression of Xf5'-Nt during the initial phases of X. fastidiosa biofilm formation that was not observed during X. fastidiosa planktonic growth. Our results demonstrate that the de/phosphorylation network catalyzed by 5'-nucleotidases may play an important role in bacterial biofilm formation, thereby contributing novel insights into bacterial nucleotide metabolism and pathogenicity.59-601-

    Recombinant Proteins for Assembling as Nano- and Micro-Scale Materials for Drug Delivery: A Host Comparative Overview

    No full text
    By following simple protein engineering steps, recombinant proteins with promising applications in the field of drug delivery can be assembled in the form of functional materials of increasing complexity, either as nanoparticles or nanoparticle-leaking secretory microparticles. Among the suitable strategies for protein assembly, the use of histidine-rich tags in combination with coordinating divalent cations allows the construction of both categories of material out of pure polypeptide samples. Such molecular crosslinking results in chemically homogeneous protein particles with a defined composition, a fact that offers soft regulatory routes towards clinical applications for nanostructured protein-only drugs or for protein-based drug vehicles. Successes in the fabrication and final performance of these materials are expected, irrespective of the protein source. However, this fact has not yet been fully explored and confirmed. By taking the antigenic RBD domain of the SARS-CoV-2 spike glycoprotein as a model building block, we investigated the production of nanoparticles and secretory microparticles out of the versions of recombinant RBD produced by bacteria (Escherichia coli), insect cells (Sf9), and two different mammalian cell lines (namely HEK 293F and Expi293F). Although both functional nanoparticles and secretory microparticles were effectively generated in all cases, the technological and biological idiosyncrasy of each type of cell factory impacted the biophysical properties of the products. Therefore, the selection of a protein biofabrication platform is not irrelevant but instead is a significant factor in the upstream pipeline of protein assembly into supramolecular, complex, and functional materials

    Structural and phylogenetic analysis of Xf-VapD.

    No full text
    <p>(A) The prediction of the 3D structure of Xf-VapD was performed using Phyre V 2.0 (red cartoon). A model was obtained with 66% of the Xf-VapD sequence and 100% confidence using the single highest scoring template. The structure was edited using PyMol. On the right, the amino acid sequence is shown with the respective secondary structure and confidence. The amino acid residues highlighted in red correspond to the area in the red cartoon shown in the 3D structure. (B) The neighbor-joining consensus tree inferred for the amino acid sequences of VapD. The values above the branches indicate the Bayesian posterior probabilities for the amino acids (PPaa) and nucleotides (PPnt). The values below the branches indicate the results of the neighbor-joining method for the amino acids (BSaa) and nucleotides (BSnt) following 1,000 bootstrap replicates. The minus symbol (‒) indicates that no support was reached for this node. The groups are the same as those in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0145765#pone.0145765.g001" target="_blank">Fig 1</a>.</p
    corecore