375 research outputs found

    High temperature thermoreflectance imaging and transient Harman characterization of thermoelectric energy conversion devices

    Get PDF
    Advances in thin film growth technology have enabled the selective engineering of material properties to improve the thermoelectric figure of merit and thus the efficiency of energy conversion devices. Precise characterization at the operational temperature of novel thermoelectric materials is crucial to evaluate their performance and optimize their behavior. However, measurements on thin film devices are subject to complications from the growth substrate, non-ideal contacts, and other thermal and electrical parasitic effects. In this manuscript, we determine the cross-plane thermoelectric material properties in a single measurement of a 25 mu m InGaAs thin film with embedded ErAs (0.2%) nanoparticles using the bipolar transient Harman method in conjunction with thermoreflectance thermal imaging at temperatures up to 550K. This approach eliminates discrepancies and potential device degradation from the multiple measurements necessary to obtain individual material parameters. In addition, we present a strategy for optimizing device geometry to mitigate the effect of both electrical and thermal parasitics during the measurement. Finite element method simulations are utilized to analyze non-uniform current and temperature distributions over the device area as well as the three dimensional current path for accurate extraction of material properties from the thermal images. Results are compared with independent in-plane and 3 omega measurements of thermoelectric material properties for the same material composition and are found to match reasonably well; the obtained figure of merit matches within 15% at room and elevated temperatures. (C) 2014 AIP Publishing LLC

    Identification of amino acid residues responsible for von Willebrand factor binding to sulfatide by charged-to-alanine-scanning mutagenesis

    Get PDF
    von Willebrand factor (VWF) performs its hemostatic functions through binding to various proteins. The A1 domain of VWF contains binding sites of not only physiologically important ligands, but also exogenous modulators that induce VWF-platelet aggregation. Sulfatides, 3-sulfated galactosyl ceramides, that are expressed on oligodendrocytes, renal tubular cells, certain tumor cells and platelets, have been suggested to interact with VWF under some pathological conditions. The binding of VWF to sulfatide requires the A1 domain, but its binding sites have not been precisely identified. Here, we report that alanine mutations at Arg1392, Arg1395, Arg1399 and Lys1423 led to decreased VWF–sulfatide binding. These sites have been reported to be the binding sites for platelet membrane glycoprotein (GP) Ib and/or snake venom botrocetin, and, interestingly, are identical to the monoclonal antibody (mAb) NMC4 epitope previously reported to inhibit the VWF-GPIb interaction. We observed that NMC4 also inhibited VWF interaction with sulfatides in a dose-dependent manner. Thus, we conclude that VWF binding sites of sulfatide overlap those of platelet GPIb and botrocetin

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Endoscopic Saphenous harvesting with an Open CO2 System (ESOS) trial for coronary artery bypass grafting surgery: study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In coronary artery bypass grafting surgery, arterial conduits are preferred because of more favourable long-term patency and outcome. Anyway <it>the greater saphenous vein </it>continues to be the most commonly used bypass conduit. <it>Minimally invasive endoscopic saphenous vein harvesting </it>is increasingly being investigated in order to reduce the morbidity associated with conventional open vein harvesting, includes postoperative leg wound complications, pain and patient satisfaction. However, to date the short and the long-term benefits of the endoscopic technique remain controversial. This study provides an interesting opportunity to address this gap in the literature.</p> <p>Methods/Design</p> <p><b>Endoscopic Saphenous harvesting with an Open CO<sub>2 </sub>System </b>trial includes two parallel vein harvesting arms in coronary artery bypass grafting surgery. It is an interventional, single centre, prospective, randomized, safety/efficacy, cost/effectiveness study, in adult patients with elective planned and first isolated coronary artery disease. A simple size of 100 patients for each arm will be required to achieve 80% statistical power, with a significant level of 0.05, for detecting most of the formulated hypotheses. A six-weeks leg wound complications rate was assumed to be 20% in the conventional arm and less of 4% in the endoscopic arm. Previously quoted studies suggest a first-year vein-graft failure rate of about 20% with an annual occlusion rate of 1% to 2% in the first six years, with practically no difference between the endoscopic and conventional approaches. Similarly, the results on event-free survival rates for the two arms have barely a 2-3% gap. Assuming a 10% drop-out rate and a 5% cross-over rate, the goal is to enrol 230 patients from a single Italian cardiac surgery centre.</p> <p>Discussion</p> <p>The goal of this prospective randomized trial is to compare and to test improvement in wound healing, quality of life, safety/efficacy, cost-effectiveness, short and long-term outcomes and vein-graft patency after endoscopic open CO<sub>2 </sub>harvesting system versus conventional vein harvesting.</p> <p>The expected results are of high clinical relevance and will show the safety/efficacy or non-inferiority of one treatment approach in terms of vein harvesting for coronary artery bypass grafting surgery.</p> <p>Trial registration</p> <p>www.clinicalTrials.gov <a href="http://www.clinicaltrials.gov/ct2/show/NCT01121341">NCT01121341</a>.</p

    2021 Update of the International Council for Standardization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants

    Get PDF
    International audienceIn 2018, the International Council for Standardization in Haematology (ICSH) published a consensus document providing guidance for laboratories on measuring direct oral anticoagulants (DOACs). Since that publication, several significant changes related to DOACs have occurred, including the approval of a new DOAC by the Food and Drug Administration, betrixaban, and a specific DOAC reversal agent intended for use when the reversal of anticoagulation with apixaban or rivaroxaban is needed due to life-threatening or uncontrolled bleeding, andexanet alfa. In addition, this ICSH Working Party recognized areas where additional information was warranted, including patient population considerations and updates in point-of-care testing. The information in this manuscript supplements our previous ICSH DOAC laboratory guidance document. The recommendations provided are based on (1) information from peer-reviewed publications about laboratory measurement of DOACs, (2) contributing author's personal experience/expert opinion and (3) good laboratory practice

    Bacterial Transmembrane Proteins that Lack N-Terminal Signal Sequences

    Get PDF
    Tail-anchored membrane proteins (TAMPs), a class of proteins characterized by their lack of N-terminal signal sequence and Sec-independent membrane targeting, play critical roles in apoptosis, vesicle trafficking and other vital processes in eukaryotic organisms. Until recently, this class of membrane proteins has been unknown in bacteria. Here we present the results of bioinformatic analysis revealing proteins that are superficially similar to eukaryotic TAMPs in the bacterium Streptomyces coelicolor. We demonstrate that at least four of these proteins are bona fide membrane-spanning proteins capable of targeting to the membrane in the absence of their N-terminus and the C-terminal membrane-spanning domain is sufficient for membrane targeting. Several of these proteins, including a serine/threonine kinase and the SecE component of the Sec translocon, are widely conserved in bacteria

    Identification and Functional Analysis of a Novel von Willebrand Factor Mutation in a Family with Type 2A von Willebrand Disease

    Get PDF
    von Willebrand factor (VWF) is essential for normal hemostasis. VWF gene mutations cause the hemorrhagic von Willebrand disease (VWD). In this study, a 9-year-old boy was diagnosed as type 2A VWD, based on a history of abnormal bleeding, low plasma VWF antigen and activity, low plasma factor VIII activity, and lack of plasma high-molecular-weight (HMW) VWF multimers. Sequencing analysis detected a 6-bp deletion in exon 28 of his VWF gene, which created a mutant lacking D1529V1530 residues in VWF A2 domain. This mutation also existed in his family members with abnormal bleedings but not in >60 normal controls. In transfected HEK293 cells, recombinant VWF ΔD1529V1530 protein had markedly reduced levels in the conditioned medium (42±4% of wild-type (WT) VWF, p<0.01). The mutant VWF in the medium had less HMW multimers. In contrast, the intracellular levels of the mutant VWF in the transfected cells were significantly higher than that of WT (174±29%, p<0.05), indicating intracellular retention of the mutant VWF. In co-transfection experiments, the mutant reduced WT VWF secretion from the cells. By immunofluorescence staining, the retention of the mutant VWF was identified within the endoplasmic reticulum (ER). Together, we identified a unique VWF mutation responsible for the bleeding phenotype in a patient family with type 2A VWD. The mutation impaired VWF trafficking through the ER, thereby preventing VWF secretion from the cells. Our results illustrate the diversity of VWF gene mutations, which contributes to the wide spectrum of VWD
    corecore