18 research outputs found

    Three mechanisms of hydrogen-induced dislocation pinning in tungsten

    Get PDF
    The high-flux deuterium plasma impinging on a divertor degrades the long-termthermo-mechanical performance of its tungsten plasma-facing components. A prime actor inthis is hydrogen embrittlement, a degradation phenomenon that involves the interactions between hydrogen and dislocations, the primary carriers of plasticity. Measuring such nanoscaleinteractions is still very challenging, which limits our understanding. Here, we demonstrate anexperimental approach that combines thermal desorption spectroscopy (TDS) andnanoindentation, allowing to investigate the effect of hydrogen on the dislocation mobility in tungsten. Dislocation mobility was found to be reduced after deuterium injection, which ismanifested as a ‘pop-in’ in the indentation stress-strain curve, with an average activation stressfor dislocation mobility that was more than doubled. All experimental results can be confidentlyexplained, in conjunction with experimental and numerical literature findings, by the simultaneous activation of three mechanisms responsible for dislocation pinning: (i) hydrogentrapping at pre-existing dislocations, (ii) hydrogen-induced vacancies, and (iii) stabilization ofvacancies by hydrogen, contributing respectively 38%, 52%, and 34% to the extra activationstress. These mechanisms are considered to be essential for the proper understanding and modeling of hydrogen embrittlement in tungsten

    Surface hardening induced by high flux plasma in tungsten revealed by nano-indentation

    No full text
    Surface hardness of tungsten after high flux deuterium plasma exposure has been characterized by nanoindentation. The effect of plasma exposure was rationalized on the basis of available theoretical models. Resistance to plastic penetration is enhanced within the 100 nm sub-surface region, attributed to the pinning of geometrically necessary dislocations on nanometric deuterium cavities e signature of plasma-induced defects and deuterium retention. Sub-surface extension of thereby registered plasmainduced damage is in excellent agreement with the results of alternative measurements. The study demonstrates suitability of nano-indentation to probe the impact of deposition of plasma-induced defects in tungsten on near surface plasticity under ITER-relevant plasma exposure conditions
    corecore