37 research outputs found

    Protein Folding Database (PFD 2.0): an online environment for the International Foldeomics Consortium

    Get PDF
    The Protein Folding Database (PFD) is a publicly accessible repository of thermodynamic and kinetic protein folding data. Here we describe the first major revision of this work, featuring extensive restructuring that conforms to standards set out by the recently formed International Foldeomics Consortium. The database now adopts standards for data acquisition, analysis and reporting proposed by the consortium, which will facilitate the comparison of folding rates, energies and structure across diverse sets of proteins. Data can now be easily deposited using a rich set of deposition tools. Enhanced search tools allow sophisticated searching and graphical data analysis affords simple data analysis online. PFD can be accessed freely at

    Ferritin Levels in the Cerebrospinal Fluid Predict Alzheimer\u27s Disease Outcomes and Are Regulated by APOE

    Get PDF
    Brain iron elevation is implicated in Alzheimer\u27s disease (AD) pathogenesis, but the impact of iron on disease outcomes has not been previously explored in a longitudinal study. Ferritin is the major iron storage protein of the body; by using cerebrospinal fluid (CSF) levels of ferritin as an index, we explored whether brain iron status impacts longitudinal outcomes in the Alzheimer\u27s Disease Neuroimaging Initiative (ADNI) cohort. We show that baseline CSF ferritin levels were negatively associated with cognitive performance over 7 years in 91 cognitively normal, 144 mild cognitive impairment (MCI) and 67 AD subjects, and predicted MCI conversion to AD. Ferritin was strongly associated with CSF apolipoprotein E levels and was elevated by the Alzheimer\u27s risk allele, APOE-ɛ4. These findings reveal that elevated brain iron adversely impacts on AD progression, and introduce brain iron elevation as a possible mechanism for APOE-ɛ4 being the major genetic risk factor for AD

    The Zinc Dyshomeostasis Hypothesis of Alzheimer's Disease

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia in the elderly. Hallmark AD neuropathology includes extracellular amyloid plaques composed largely of the amyloid-β protein (Aβ), intracellular neurofibrillary tangles (NFTs) composed of hyper-phosphorylated microtubule-associated protein tau (MAP-tau), and microtubule destabilization. Early-onset autosomal dominant AD genes are associated with excessive Aβ accumulation, however cognitive impairment best correlates with NFTs and disrupted microtubules. The mechanisms linking Aβ and NFT pathologies in AD are unknown. Here, we propose that sequestration of zinc by Aβ-amyloid deposits (Aβ oligomers and plaques) not only drives Aβ aggregation, but also disrupts zinc homeostasis in zinc-enriched brain regions important for memory and vulnerable to AD pathology, resulting in intra-neuronal zinc levels, which are either too low, or excessively high. To evaluate this hypothesis, we 1) used molecular modeling of zinc binding to the microtubule component protein tubulin, identifying specific, high-affinity zinc binding sites that influence side-to-side tubulin interaction, the sensitive link in microtubule polymerization and stability. We also 2) performed kinetic modeling showing zinc distribution in extra-neuronal Aβ deposits can reduce intra-neuronal zinc binding to microtubules, destabilizing microtubules. Finally, we 3) used metallomic imaging mass spectrometry (MIMS) to show anatomically-localized and age-dependent zinc dyshomeostasis in specific brain regions of Tg2576 transgenic, mice, a model for AD. We found excess zinc in brain regions associated with memory processing and NFT pathology. Overall, we present a theoretical framework and support for a new theory of AD linking extra-neuronal Aβ amyloid to intra-neuronal NFTs and cognitive dysfunction. The connection, we propose, is based on β-amyloid-induced alterations in zinc ion concentration inside neurons affecting stability of polymerized microtubules, their binding to MAP-tau, and molecular dynamics involved in cognition. Further, our theory supports novel AD therapeutic strategies targeting intra-neuronal zinc homeostasis and microtubule dynamics to prevent neurodegeneration and cognitive decline

    A blood-based signature of cerebrospinal fluid Aβ1-42 status.

    No full text
    It is increasingly recognized that Alzheimer's disease (AD) exists before dementia is present and that shifts in amyloid beta occur long before clinical symptoms can be detected. Early detection of these molecular changes is a key aspect for the success of interventions aimed at slowing down rates of cognitive decline. Recent evidence indicates that of the two established methods for measuring amyloid, a decrease in cerebrospinal fluid (CSF) amyloid β1-42 (Aβ1-42) may be an earlier indicator of Alzheimer's disease risk than measures of amyloid obtained from Positron Emission Tomography (PET). However, CSF collection is highly invasive and expensive. In contrast, blood collection is routinely performed, minimally invasive and cheap. In this work, we develop a blood-based signature that can provide a cheap and minimally invasive estimation of an individual's CSF amyloid status using a machine learning approach. We show that a Random Forest model derived from plasma analytes can accurately predict subjects as having abnormal (low) CSF Aβ1-42 levels indicative of AD risk (0.84 AUC, 0.78 sensitivity, and 0.73 specificity). Refinement of the modeling indicates that only APOEε4 carrier status and four plasma analytes (CGA, Aβ1-42, Eotaxin 3, APOE) are required to achieve a high level of accuracy. Furthermore, we show across an independent validation cohort that individuals with predicted abnormal CSF Aβ1-42 levels transitioned to an AD diagnosis over 120 months significantly faster than those with predicted normal CSF Aβ1-42 levels and that the resulting model also validates reasonably across PET Aβ1-42 status (0.78 AUC). This is the first study to show that a machine learning approach, using plasma protein levels, age and APOEε4 carrier status, is able to predict CSF Aβ1-42 status, the earliest risk indicator for AD, with high accuracy

    RCPdb: An evolutionary classification and codon usage database for repeat-containing proteins

    No full text
    Over 3% of human proteins contain single amino acid repeats (repeat-containing proteins, RCPs). Many repeats (homopeptides) localize to important proteins involved in transcription, and the expansion of certain repeats, in particular poly-Q and poly-A tracts, can also lead to the development of neurological diseases. Previous studies have suggested that the homopeptide makeup is a result of the presence of G+C-rich tracts in the encoding genes and that expansion occurs via replication slippage. Here, we have performed a large-scale genomic analysis of the variation of the genes encoding RCPs in 13 species and present these data in an online database (http://repeats.med.monash.edu.au/genetic_analysis/). This resource allows rapid comparison and analysis of RCPs, homopeptides, and their underlying genetic tracts across the eukaryotic species considered. We report three major findings. First, there is a bias for a small subset of codons being reiterated within homopeptides, and there is no G+C or A+T bias relative to the organism’s transcriptome. Second, single base pair transversions from the homocodon are unusually common and may represent a mechanism of reducing the rate of homopeptide mutations. Third, homopeptides that are conserved across different species lie within regions that are under stronger purifying selection in contrast to nonconserved homopeptides
    corecore