152 research outputs found

    A high-resolution aeromagnetic field test in Friuli: towards developing remote location of buried ferro-metallic bodies

    Get PDF
    High Resolution AeroMagnetic surveys (HRAM) are a novel tool experimented in several countries for volcano and earthquake hazard re-assessment, ground water exploration and mitigation, hazardous waste site characterization and accurate location of buried ferrous objects (drums, UXO, pipelines). The improvements achieved by HRAM stem from lower terrain clearance coupled with accurately positioned, real-time differential navigation on closely spaced flight grids. In field cultural noise filtering, advanced data processing, imaging and improved interpretation techniques enhance data information content. Development of HRAM approaches might also contribute to mitigate environmental hazards present throughout the Italian territory. Hence an HRAM field test was performed in July 2000 in Friuli, North-Eastern Italy to assess the capabilities and limitations of HRAM over a buried pipeline and a domestic waste site. A Cesium magnetometer in towed bird configuration was used on two separate grids. Profile line spacing was 50-100 m and bird nominal ground clearance was set to 50 m. Microlevelled total field magnetic anomaly data forms the basis for subsequent advanced processing products including 3D analytic signal, maximum horizontal gradient of pseudo-gravity and 3D Euler Deconvolution. The magnetic signatures we detected and enhanced over the environmental test site area in Friuli are also compared with similar but more extensive HRAM signatures recently observed in other countries

    Moho depths of Antarctica: comparison of seismic, gravity, and isostatic results

    Get PDF
    The lithospheric structure of Antarctica is still under‐explored. Moho depth estimate studies are in disagreement by more than 10 km in several regions, including for example the hinterland of the Transantarctic Mountains. Taking account the sparseness of seismological stations and the non‐uniqueness of potential field methods, inversions of Moho depth are performed here based on satellite gravity data in combination with currently available seismically constrained Moho depth estimates. Our results confirm that a lower density contrast at the Moho is present under East Antarctica than beneath West Antarctica. A comparison between the Moho depth derived from our inversion and an Airy‐isostatic Moho model also reveals a spatially variable buoyancy contribution from the lithospheric mantle beneath contrasting sectors of East Antarctica. Finally, to test the plausibility of different Moho depths scenarios for the Transantarctic Mountains–Wilkes Subglacial Basin system, we present 2‐D lithospheric models along the TAMSEIS/GAMSEIS seismic profile. Our models show that if a moderately depleted lithospheric mantle of inferred Proterozoic age underlies the region, then a shallower Moho is more likely beneath the Wilkes Subglacial Basin. If however, re‐fertilisation processes occurred in the upper mantle, for example in response to Ross‐age subduction, then a deeper Moho scenario is preferred. We conclude that 3D lithospheric modeling, coupled with the availability of new seismic information in the hinterland of the Transantarctic Mountains is required to help resolve this controversy, thereby also reducing the ambiguities in geothermal heat flux estimation beneath this key part of the East Antarctic Ice Sheet

    New geophysical compilations link crustal block motion to Jurassic extension and strike-slip faulting in the Weddell Sea Rift System of West Antarctica

    Get PDF
    Gondwana breakup changed the global continental configuration, leading to opening of major oceanic gateways, shifts in the climate system and significant impacts on the biosphere, hydrosphere and cryosphere. Although of global importance, the earliest stages of the supercontinental fragmentation are poorly understood. Reconstructing the processes driving Gondwana breakup within the ice-covered Weddell Sea Rift System (WSRS) has proven particularly challenging. Paleomagnetic data and tectonic reconstructions of the WSRS region indicate that major Jurassic translation and rotation of microcontinental blocks were a key precursor to Gondwana breakup by seafloor spreading. However, geophysical interpretations have provided little support for major motion of crustal blocks during Jurassic extension in the WSRS. Here we present new compilations of airborne magnetic and airborne gravity data, together with digital enhancements and 2D models, enabling us to re-evaluate the crustal architecture of the WSRS and its tectonic and kinematic evolution. Two provinces are identified within the WSRS, a northern E/W trending province and a southern N/S trending province. A simple extensional or transtensional model including ~ 500 km of crustal extension and Jurassic magmatism accounts for the observed geophysical patterns. Magmatism is linked with rifting between South Africa and East Antarctica in the north, and associated with back-arc extension in the south. Our tectonic model implies ~ 30 degrees of Jurassic block rotation and juxtaposes the magnetically similar Haag Block and Shackleton Range, despite differences in both Precambrian and Pan African-age surface geology. Although geophysically favoured our new model cannot easily be reconciled with geological and paleomagnetic interpretations that require ~ 1500 km of motion and 90 degrees anticlockwise rotation of the Haag-Ellsworth Whitmore block from a pre-rift position adjacent to the Maud Belt. However, our model provides a simpler view of the WSRS as a broad Jurassic extensional/transtensional province within a distributed plate boundary between East and West Antarctica

    An embayment in the East Antarctic basement constrains the shape of the Rodinian continental margin

    Get PDF
    East Antarctic provinces lay at the heart of both Rodinian and Gondwanan supercontinents, yet poor exposure and limited geophysical data provide few constraints on the region’s tectonic evolution. The shape of the Mawson Continent, the stable nucleus of East Antarctica, is one of Antarctica’s most important, but contested features, with implications for global plate reconstructions and local tectonic models. Here we show a major marginal embayment 500–700 km wide, cuts into the East Antarctic basement in the South Pole region. This embayment, defined by new aeromagnetic and other geophysical data, truncates the Mawson Continent, which is distinct from basement provinces flanking the Weddell Sea. We favour a late Neoproterozoic rifting model for embayment formation and discuss analogies with other continental margins. The embayment and associated basement provinces help define the East Antarctic nucleus for supercontinental reconstructions, while the inherited marginal geometry likely influenced evolution of the paleo-Pacific margin of Gondwana

    Enhanced images and new models of the Wilkes Subglacial Basin help constrain the variability in geological boundary conditions for the East Antarctic Ice Sheet

    Get PDF
    The Wilkes Subglacial Basin (WSB) is a huge tectonic feature formed by Cenozoic lithospheric flexure coupled with Mesozoic to Cenozoic extension localised in sub-basins (Paxman et al., 2019, JGR). The deep northern WSB underlies the catchments of the Matusevich, Cook, Ninnis and Mertz glaciers that are largely marine-based, which renders them more vulnerable to past and predicted future ocean and climate warming. Here we present airborne radar and enhanced magnetic and gravity views of the northern WSB that help unveil the spatial variability in geological boundary conditions for this key sector of the East Antarctic Ice Sheet (EAIS). Residual gravity anomalies obtained by stripping out Moho effects were compared with aeromagnetic anomaly images to glean new perspectives into intra-crustal features. Depth to magnetic and gravity source estimates were then used to help derive the first combined 2D forward models for the region. We first examine a model crossing the northern WSB extending from the Matusevich Glacier to the deep Cook Basins. The model reveals a major crustal boundary along the eastern margin of the WSB interpreted as separating the Ross Orogen from a composite Precambrian Wilkes Terrane buried beneath Devonian to Jurassic sediments and early Cambrian metasediments. By analogy with the better understood Rennick Graben in northern Victoria Land, the Cook basins are interpreted as glacially over deepened grabens. The Cook basins clearly play a major role in EAIS dynamics, as they steer fast glacial flow deep into the interior of East Antarctica where they connect to the Central Basins. Our new model across these basins shows that the inferred Precambrian basement is both shallower and of more felsic bulk composition compared to the Cook basins. This fundamental difference in basement depth, bulk composition and thickness of sedimentary cover is likely to exert major influences on geothermal heat variability in this key sector of the EAIS

    Geophysical imaging unveils the largest pull-apart basin in East Antarctica

    Get PDF
    West Antarctica hosts one of the largest continental rift systems on Earth, the West Antarctic Rift System (WARS) that forms the lithospheric cradle for the West Antarctic Ice Sheet. The WARS is known to have experienced several stages of extension starting with distributed/wide mode extension in the Cretaceous, followed by narrower mode and variably oblique extension in the Cenozoic, the latter potentially triggered by the onset of oceanic seafloor spreading in the Adare Basin (Davey et al., 2016, GRL). However, the extent and impact of Cenozoic extension and transtension within the Transantarctic Mountains sector of East Antarctica is much less well understood. Here we present results from a new project (REGGAE) that by analysing aeromagnetic, aerogravity and land-gravity and bedrock topography images and models provides key new geophysical constraints on the form, extent and kinematics of the largest Cenozoic pull-apart basin recognised so far in East Antarctica, the Rennick Graben (RG). Potential field imaging reveals the extent of part of a Jurassic tholeiitic Large Igneous Province preserved within the RG and helps delineate the inherited structural architecture of the underlying Ross-age basement in northern Victoria Land, including highly magnetic arc basement in the northern Wilson Terrane and the subglacial extent of a thrust fault belt located between the western flank of the RG and the eastern margin of Wilkes Subglacial Basin (WSB). We show that the RG is a major composite right-lateral pull-part basin that extends from the Oates Coast to the Southern Cross Mountains crustal block and propose that it is kinematically connected with both the western edge of the WARS and the eastern margin of the WSB. More cryptic evidence for an earlier phase of left-lateral strike slip deformation is also emerging from our recent geological field work in the study region and relatively subtle offsets in aeromagnetic anomaly patterns. Our findings suggest that the RG is part of a distributed region of the continental lithosphere in East Antarctica that was preferentially deformed in response to Cenozoic transtensional stresses that likely also facilitated propagation of accelerated oceanic transform faulting in the adjacent oceanic lithosphere located between southeastern Australia and Tasmania

    Geological sketch map and implications for ice flow of Thwaites Glacier, West Antarctica, from integrated aerogeophysical observations

    Get PDF
    The geology beneath Thwaites Glacier, the Antarctic glacial catchment most vulnerable to climate change, is unknown. Thwaites Glacier lies within the West Antarctic Rift System, but details of the subglacial geology relevant to glacial flow, including sediment availability, underlying lithology, and heat flux, are lacking. We present the first sketch map of the subglacial geology of Thwaites Glacier, interpreted from maps of airborne gravity, magnetic and radar data, supported by 2D models and 3D inversion of subsurface properties, and the regional geological context. A zone of Cretaceous mafic magmatism extending ~200 km inland from the coast is interpreted, while sedimentary basins are restricted to a region 150 to 200 km inboard of the coast, underlying just 20% of the catchment. Several granitic subglacial highlands are identified, forming long-lived topographic highs. Our geological interpretation places constraints on the basal properties of Thwaites Glacier, laying the foundation for both improved predictions of ice sheet change and studies of West Antarctic tectonics

    East Antarctica magnetically linked to its ancient neighbours in Gondwana

    Get PDF
    We present a new magnetic compilation for Central Gondwana conformed to a recent satellite magnetic model (LCS-1) with the help of an equivalent layer approach, resulting in consistent levels, corrections that have not previously been applied. Additionally, we use the satellite data to its full spectral content, which helps to include India, where high resolution aeromagnetic data are not publically available. As India is located north of the magnetic equator, we also performed a variable reduction to the pole to the satellite data by applying an equivalent source method. The conformed aeromagnetic and satellite data are superimposed on a recent deformable Gondwana plate reconstruction that links the Kaapvaal Craton in Southern Africa with the Grunehogna Craton in East Antarctica in a tight fit. Aeromagnetic anomalies unveil, however, wider orogenic belts that preserve remnants of accreted Meso- to Neoproterozoic crust in interior East Antarctica, compared to adjacent sectors of Southern Africa and India. Satellite and aeromagnetic anomaly datasets help to portray the extent and architecture of older Precambrian cratons, re-enforcing their linkages in East Antarctica, Australia, India and Africa
    • 

    corecore