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Abstract 

The Weddell Sea Rift was a major focus for Jurassic extension and magmatism during the 

early stages of Gondwana break-up and underlies the Weddell Sea Embayment, which 

separates East Antarctica from a collage of crustal blocks in West Antarctica. Newly-

collected aerogeophysical data over the catchments of Institute and Möller ice streams reveal 

the inland extent of the Weddell Sea Rift against the Ellsworth-Whitmore block and a 

hitherto unknown major left-lateral strike slip boundary between East and West Antarctica. 

Aeromagnetic and gravity anomalies define the regional subglacial extent of Proterozoic 

basement, Middle Cambrian rift-related volcanic rocks, Jurassic intrusions and sedimentary 

rocks of inferred post-Jurassic age. 2D and 3D magnetic depth-to-source estimates were used 

to help constrain joint magnetic and gravity models for the region. The models reveal that 

Proterozoic crust similar to that exposed at Haag Nunataks, extends southeast of the 

Ellsworth Mountains to the margin of the Coastal Basins. Thick granitic Jurassic intrusions 

are modelled at the transition between the Ellsworth-Whitmore block and the thinner crust of 

the Weddell Sea Rift and within the Pagano Shear Zone. The crust beneath the inland 

extension of the Weddell Sea Rift is modelled as being either ~4 km thinner compared to the 

adjacent Ellsworth-Whitmore block or as underlain by an up to 8 km thick mafic underplate.   

Highlights 

 Boundaries between the Weddell Sea Rift, West Antarctica, and East Antarctia. 

 Geophysical data images a major fault zone separating East and West Antarctica. 

 Proterozoic basement, Cambrian volcanic rocks, Jurassic granites are mapped. 

 Deep crustal underplate underlies Jurassic granites, not upper crustal mafic rocks. 

 

Keywords: Continental rifting, Strike-slip faulting, aeromagnetic, gravity, Antarctica 
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1 Introduction 

The Weddell Sea Embayment (Fig. 1) lies within the region where Gondwana breakup 

initiated by Jurassic rifting of Antarctica and Africa (Dalziel et al., 2000; Elliot and Fleming, 

2000; Storey et al., 2001). The embayment extends for 1200 km from the Orion Anomaly to 

the Ellsworth Whitmore Mountains (EWM) and is ~700 km  wide (Golynsky et al., 2000). A 

collage of four micro-plates form West Antarctica and lie west and south of the Weddell Sea 

Embayment: the Antarctic Peninsula, Thurston Island, Marie Byrd Land, and the EWM 

(Dalziel and Elliot, 1982).  In East Antarctica,  the embayment in flanked by the Coats Land  

block, the Shackleton Range and the Dufek Intrusion (Fig. 1) (Studinger and Miller, 1999). 

The Weddell Sea Embayment therefore lies in a key position for understanding the structural 

relationship between East and West Antarctica, and the development of continental rifting 

processes during the early stages of Gondwana break-up.  

The tectonic history of Weddell Sea Embayment is hotly debated. The EWM block, is 

inferred from structural and paleomagnetic data to have been located adjacent to South Africa  

within Gondwana (Curtis, 2001; Randall and MacNiocaill, 2004) and  subsequently displaced 

from Africa to West Antarctica during Jurassic rifting ~180 Ma (Dalziel, 2007; Dalziel and 

Grunow, 1992).  Alternatively, palaeomagnetic results have been interpreted as revealing 

later mid-Cretaceous (~100 Ma) block motion along a shear zone in the Weddell Sea region 

(DiVenere et al., 1996). The hypothesis for significant (~1000 km) post-Jurassic motion 

within the Weddell Sea Embayment, is however incompatible with reconstructions of marine 

magnetic anomalies north of the Orion anomaly  (Ghidella et al., 2007).  Additionally, more 

recent models of  South Atlantic and SW Indian ocean evolution do not require major 
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movements of West Antarctic micro-plates during Gondwana breakup (Eagles and Vaughan, 

2009). 

Evidence for continental rifting and associated magmatism in the Weddell Sea Embayment 

derives from reconnaissance geophysical data and geological investigations.  Regional 

gravity data have been modelled as indicating that the Weddell Sea Rift is underlain by ~27 

km thick rifted continental crust; in addition a Te (effective elastic thickness) of ~35 km has 

been estimated for the region, suggesting that continental rifting may have occurred in a 

period between 230-160 Ma (Studinger and Miller, 1999).  Seismic data at the edge of 

Filchner and Ronne Ice shelves suggest high stretching factors between 1.5 and 3.0 

(Hübscher et al., 1996; Jokat et al., 1996). Large-scale bimodal Middle Jurassic magmatism 

has been linked to a Jurassic superplume plume in the Weddell Sea Embayment region 

(Storey and Kyle, 1997; Storey et al., 2001), which has been suggested to have heralded early 

Gondwana break-up (Riley and Knight, 2001; Storey, 1995; Storey et al., 2001; White and 

McKenzie, 1989). Both the layered mafic Dufek Intrusion and the dolerite sills and 

Kirkpatrick Basalts of the Ferrar Large Igneous Province of East Antarctica (Elliot and 

Fleming, 2000; Elliot et al., 1999; Leat, 2008) and Jurassic granites exposed in the EWM 

(Storey et al., 1988) have been related to Weddell Sea rifting processes. 

Recent satellite gravity data suggest that the thinned continental crust of the Weddell Sea Rift  

continues inland  towards the margin of the EWM block (Block et al., 2009). However, our 

ability to analyse Mesozoic continental rifting processes and associated magmatism onshore 

has been hampered by the paucity of near surface geophysical exploration (e.g. Behrendt 

1974; Garrett et al., 1988; Storey et al., 1988). Widely spaced radar and aeromagnetic surveys 

were flown in the 70’s and 80’s over the region, and limited oversnow radar, seismic and land 
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gravity traverse data was acquired in 1950’s and 1960’s (Behrendt et al., 1974; Thiel, 1961). 

We present recently acquired airborne radar, aeromagnetic and aerogravity data that provide 

a new view of subglacial geology and crustal structure inland of the Weddell Sea Rift and 

enable us to identify a previously unknown major strike-slip fault system separating East and 

West Antarctica.  

 

2 Geological and geophysical framework 

2.1 Pre-Jurassic rocks 

Aeromagnetic data indicate that highly magnetic Proterozoic basement similar to that 

exposed in the Haag Nunataks (Fig. 1) (Millar and Pankhurst, 1987; Storey et al., 1994)  

underlies part of the EWM (Garrett et al., 1987; Maslanyj and Storey, 1990), which includes 

a ~13 km thick succession of folded Cambrian to Permian age metasediments  (Curtis and 

Storey, 1996; Storey et al., 1988). The metasedimentary sequence contains volcanic rocks 

and intrusive sills up to 300 m thick (Fig. 2a), interpreted to have formed in a Middle 

Cambrian continental rift setting (Curtis et al., 1999; Vennum et al., 1992).  

The metasediments in the EWM are unaffected by the Cambrian-Ordovician Ross Orogen  

indicating  that this block was not in its present position relative to East Antarctica at ~500 

Ma (Curtis and Storey, 1996; Storey and Dalziel, 1987). The entire stratigraphic succession 

was affected by two post-Permian stages of deformation (Curtis, 2001). The main dextral 

transpressive Permo-Triassic deformation event within the Ellsworth Mountains (Fig. 2a) 

suggests that the EWM was part of the South African Cape Fold Belt (Curtis and Storey, 

1996). Palaeomagnetic reconstructions support the interpretation that the EWM block was 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

6 

 

adjacent to South Africa prior to early Gondwana break-up (Randall and MacNiocaill, 2004). 

Two structural domains have been proposed for the EWM region: the Ellsworth Domain to 

the west, and the more highly deformed Marginal Domain to the east (Storey and Dalziel, 

1987).   

 

2.2 Jurassic rifting and magmatism  

 Gravity data reveal thinned continental crust beneath the Filchner Rift and Weddell Rift 

Anomaly (Aleshkova et al., 2000; Studinger and Miller, 1999) (Fig. 1). Seismic refraction 

data image crustal thinning beneath the Filchner Rift and additionally indicate extensive 

mafic underplating (Leitchenkov and Kudryavtzev, 2000), likely related to Jurassic rifting 

processes and possibly to an inferred mantle plume in the Weddell Sea Embayment. A ‘rift-

rift-rift’ triple junction may have developed during an early phase of Gondwana breakup, 

with the failed third arm of the rift extending along the Central Trough (Ferris et al., 2002; 

Ferris et al., 2000). 

Jurassic igneous rocks are exposed along the flanks of the Weddell Sea Embayment and are 

inferred from geophysical data within the embayment.  A Jurassic volcanic rifted margin 

appears to flank East Antarctica (Hunter et al., 1996; Leitchenkov et al., 1996). The Explora 

magnetic anomaly is interpreted as arising from a Mid-Jurassic seaward dipping volcanic 

sequence (Hinz and Krause, 1982; Hunter et al., 1996) or Jurassic intrusions associated with 

the Filchner Rift (Golynsky et al., 2000; Leitchenkov and Kudryavtzev, 2000). The Explora 

Anomaly may link to the exposed mafic-ultramafic Dufek intrusion (Behrendt et al., 1980; 

Ferris et al., 1998), which is part of the Jurassic Ferrar Large Igneous Province (Minor and 

Mukasa, 1997).  Jurassic granites intrude Palaeozoic metasediments (Fig. 2a) within the 
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EWM block and are dated by Rb-Sr methods at 176-173 Ma (Storey et al., 1988).  The 

granites have  S-type affinity, with 70 to 76 % wt.% SiO2, similar to other post-tectonic 

granites (Vennum and Storey, 1987b) and may have been derived from mafic Ferrar-like 

magma (Storey et al., 1988). At Hart Hills a sheared quartz-gabbro that exhibits geochemical 

similarities with the Ferrar suite intrudes deformed metasedimentary rocks (Storey et al., 

1988; Vennum and Storey, 1987a). Positive aeromagnetic anomalies over exposures of the 

Jurassic granites have been interpreted as revealing 5-10 km mafic bodies beneath the 

granites (Garrett et al., 1988).  

 

3 Aerogeophysical survey  

3.1 Survey layout and procedures 

An extensive aerogeophysical survey was undertaken over the catchments of the Institute and 

Möller ice streams during the 2010/11 field season (Fig. 2b).  Approximately 23,000 km of 

aerogeophysical data were collected during 27 flights, covering an area of ~209,000 km
2
. 

Operations were from two field camps, first C110 for 17 flights, then Patriot Hills for 10 

flights (Fig. 2b). A favourable weather window, with low wind and relatively clear skies 

allowed completion of all survey flights between 23
th

 December and 12
th

 January. The survey 

aircraft was a British Antarctic Survey (BAS) Twin Otter, equipped with airborne radar, 

aeromagnetic, airborne gravity, and laser altimeter systems, configured to allow simultaneous 

collection of all data streams. Technical capabilities of the radar, magnetic and gravity 

systems were as reported previously (Corr et al., 2007; Ferraccioli et al., 2007a; Jordan et al., 

2007), and the swath laser system is similar to that reported by (Hvidegaard et al., 2011).  

The main survey grid was flown at 7.5 km line spacing with tie lines every 25 km.  
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Exploratory lines (with a 50 km spacing) were also flown to link to previous aerogeophysical 

surveys over the West Antarctic Rift System (Bell et al., 1998; Blankenship et al., 2001; 

Ferraccioli et al., 2007b; Studinger et al., 2002; Vaughan et al., 2006) and the Dufek intrusion 

(Ferris et al., 2003).   

The survey was flown in four constant elevation blocks (Fig. 2b) to facilitate collection of 

aerogravity data while not exceeding the ~500 m surface clearance limit, above which the 

radar data may become degraded.  The changes in altitude at block boundaries lead to 

inevitable loss of ~25 km of airborne gravity data. Data loss was minimised by re-flying the 

overlapping sections, where possible.  The ‘stepped’ flight pattern also ensured line 

intersections were at the same elevation, simplifying magnetic levelling procedures. Flights 

generally coincided with periods of minimal diurnal magnetic disturbance as measured at the 

local magnetic base station, between ~14:00 and 01:00 UTC.  

Positional information was calculated from GPS (Global Positioning System) and IMU 

(Inertial Measurement Unit) data. Two Leica 500 GPS base stations were operated at the field 

camp throughout the survey, and Leica 500 and Novatel DL-V3 GPS receivers were fitted in 

the aircraft.  In addition an iMAR® IMU was fitted directly beneath the gravity meter. Data 

were processed using the Novatel Inertial Explorer post processing software. We used a 

‘loosely coupled’ approach where first kinematic GPS solutions were calculated between a 

single Leica base station and the Novatel GPS receiver, before INS data were integrated. 

Positional data were referenced to WGS-84 ellipsoidal heights. The second GPS base station 

and receiver were run for backup. The reported standard deviation on the positional error for 

the GPS kinematic solutions was 7 cm in the horizontal and 20 cm in the vertical dimension.  
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The loosely coupled positional solutions, including the IMU data, showed reduced errors with 

a standard deviation of 4.1 cm horizontal and 6.5 cm vertical.   

 

3.2 Subglacial topography 

Previous knowledge of the subglacial topography beneath the Institute and Möller Ice 

Streams (Fig. 1) derived from reconnaissance airborne radar data flown in the 1970s by the 

SPRI/NSF/TUD programme (Drewry, 1983), and limited airborne radar data collected in the 

1980s by BAS (Garrett et al., 1988).  Line spacing was ~50 km, and ice thickness was often 

not recovered. Additionally, positioning for the 1970s surveys typically relied on inertial 

navigation systems and reckoning, which can introduce significant positional errors of 2-3 

km (Garrett et al., 1988; Jankowski and Drewry, 1981).   

Our new ice penetrating radar data were collected using a coherent system with a carrier 

frequency of 150 MHz, a bandwidth of 12 MHz (Corr et al., 2007; Ross et al., 2012). To 

yield an enhanced view of the ice-bed interface we applied Doppler processing that helps 

focus radar-scattering hyperbola in the along-track direction. With a 13 Hz data rate we 

obtain a ~10 m along track sampling interval.  The onset of the received bed echo was picked 

using PROMAX seismic processing software and yielded a crossover RMS error of ~18 m  

(Ross et al., 2012). Bedrock elevation was interpolated onto a 2.5 km grid mesh using a 

minimum curvature algorithm. 

Our airborne radar data reveal the detailed bedrock topography of the Institute and Möller Ice 

Stream region (Fig. 3a). The northern part of the area is dominated by two broad basins 

herein named the Coastal Basins up to 1800 m below sea level (Ross et al., 2012).  The 
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Southern Basin may represent the onshore continuation of the Thiel Trough that lies between 

Berkner Island and the Dufek Intrusion (TT in Fig. 1) (Drewry, 1983).   

The Ellsworth Trough incises the Ellsworth Whitmore Mountains and reaches depths of 

>2000 m below sea level. A complex series of en-echelon basins (Fig 3a), marks the 

transition between the Ellsworth and Marginal domains (Storey and Dalziel, 1987); we define 

these as the Transitional Basins.    The en-echelon basins are between 40 and 80 km long and 

10 to 20 km wide.  Northeast of Hart Hills, closed, elongate basins are recognised, which we 

call the Marginal Basins.  The most elevated topography corresponds to the EWM, where we 

mapped peak elevations between 1100 and 2293 m.  

3.3 Magnetic anomalies 

To obtain the aeromagnetic anomalies we applied magnetic compensation, IGRF removal, 

base station diurnal correction, statistical levelling and microlevelling.  Magnetic 

compensation was carried out using the using the PEICOMP program from Pico Envirotec, 

and other processing steps were carried out using Geosoft
™

 Oasis Montage 7.3
©

 software.  

Prior to base station correction, the data had a cross-over error standard deviation of 62 nT. 

Our magnetic base station was located at C110 for the first half of the survey and at Patriot 

Hills for the second half of the survey, with flights extending up to 487 km from the base 

(Fig. 2b). Errors associated with large base station separation (Maslanyj and Damaske, 1986) 

were minimised by low-pass filtering base station observations (Damaske, 1989). The cross-

over error standard deviation was 46.6 nT after the base station correction.  Statistical 

levelling was then applied to minimise residual heading errors and shorter wavelength diurnal 

variations. The levelled data were draped to 2100 m above the bed topography (the average 

bed clearance) using a 2D Fourier method (Pilkington and Thurston, 2001). The draped 
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magnetic data were then interpolated onto a grid with a 750 m cell size (1/10 line spacing), 

and micro-levelling was applied to minimise residual flight line corrugation (Ferraccioli et 

al., 1998). After statistical and microlevelling the final RMS error was 4 nT. The final stage 

in data processing was reduction to the pole (RTP), using an inclination and declination of -

69.6° and 43.1° respectively. Power spectra analysis shows that anomalies with wavelengths 

of ~3km can be resolved from our draped magnetic line data. 

 

3.3.1 Reduced to the pole magnetic anomaly map 

The map of RTP aeromagnetic anomalies (Fig. 3b) shows a broad correlation with subglacial 

topography. Three of the positive magnetic anomalies correspond to exposures of Jurassic 

granite at Pirrit Hills, Nash Hills and Pagano Nunataks as noted in previous reconnaissance 

aeromagnetic surveys (Garrett et al., 1988).  The Pirrit Hills anomaly has an amplitude of up 

to 290 nT and wavelength of ~50 km. The Nash Hills anomaly has a similar overall 

wavelength of ~50 km, but lower amplitude of ~60 nT. The E-W trending Pagano Anomaly 

has an amplitude of up to 246 nT and is ~50 km wide. It extends ~125 km towards the coast 

from Pagano Nunatak and is flanked by the Transitional and Marginal Basins.  Magnetic 

lineaments (L1-L5) broadly correspond to the main subglacial topographic trends. The 

Ellsworth Anomalies (EA) are located between the Ellsworth Mountains and the Ellsworth 

Trough and exhibit  amplitudes of ~40 nT and wavelengths of ~20 km. M1 is a ~40 km wide 

anomaly with an amplitude of 95 nT and is located adjacent to the Western Basin. The EA 

and anomaly M1 are inferred to reflect Cambrian volcanics and Proterozoic basement rocks 

respectively, as discussed further in Section 7.1. Within the Coastal Basin magnetic 

anomalies are generally subdued. Anomalies M2 and M3 have amplitudes of ~20 nT and a 
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wavelength of ~50 km. They are bounded by E-W trending lineations L2, L3 and L4 that 

flank the northern margin of the Transitional Basins.  Minor positive magnetic anomalies are 

located between the M2 and the Pagano Anomaly and correspond to the margins of some of 

the en-echelon basins.  Anomalies M4, M5 and M6, between Nash Hills and the Pagano 

Anomaly are approximately circular positive anomalies with wavelengths of ~30 km and 

amplitudes between 20 and 40 nT. Much higher amplitude (>450 nT) and short wavelength 

anomalies are superimposed on a broader magnetic low over the Whitmore Mountains. We 

interpret these anomalies as reflecting Cenozoic rift-related magmatism along the flank of the 

West Antarctic Rift System (Behrendt et al., 2004).  

  

3.4 Gravity anomalies  

3.4.1 Aerogravity data processing 

The airborne gravity data were processed using Geosoft Oasis Montage 7.3 software.  

Dynamic  corrections related to aircraft movement were derived from differential GPS and 

inertial navigation data, processed using Waypoint™ Inertial-Explorer software (Kennedy et 

al., 2007).  Corrections to the raw airborne gravity data were made for vertical acceleration, 

the first order Eötvos effect (Harlan, 1968), horizontal accelerations (LaCoste, 1967), latitude 

on the WGS 84 ellipsoid (Woollard, 1979) and elevation above WGS 84 ellipsoid (linear free 

air correction of 0.3086 mGal/m).  We do not correct our data to the geoid, as it is poorly 

known in this region. The variations in the measured gravity field are therefore strictly 

gravity disturbances (Hackney and Featherstone, 2003). However, for consistency with the 

geophysical literature the local variations in gravity field associated with geological sources 

are referred to hereafter as gravity anomalies.  Relative gravity anomalies were drift 
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corrected, and tied back to the absolute gravity value at Rothera Station (Jones and Ferris, 

1999) using a LaCoste and Romberg land gravity meter. After these corrections were applied, 

the data were filtered with a 9 km ½ wavelength space-domain kernel filter to minimise short 

wavelength noise (Holt et al., 2006).  Microlevelling techniques can also be applied to gravity 

data to minimise residual line to line noise remaining after standard levelling procedures 

(Ferraccioli et al., 2011; Lane, 2004). We applied Butterworth filtering and directional cosine 

filtering to microlevel the data (Ferraccioli et al., 1998). The maximum and minimum of the 

microlevelling correction was 4.45 and -3.63 mGal, with a standard deviation of 1.24 and 

mean of 0 mGal. The microlevelled free air gravity data were upward continued (Pilkington 

and Thurston, 2001) to a uniform altitude of 2600 m, corresponding to the highest flight 

elevation of the survey.  The final cross-over RMS error was 4.3 mGal, which is slightly 

higher than the ~3 mGal of previous Antarctic airborne gravity surveys (Bell et al., 1999; 

Ferraccioli et al., 2006; Jones et al., 2002; Jordan et al., 2010). We attribute this to the 

stepped pattern of the tie-line flights, which meant that only shorter lengths of tie-line data 

could be used.  

 

3.4.2 Free air and Bouguer anomaly maps 

The free air gravity anomaly (Fig. 4a) shows a clear correlation with the subglacial 

topography (Fig. 3a).  Maximum positive values of 50 to 60 mGal are observed towards the 

EWM, and the plateau region close to the centre of the survey area has mean value of -7 

mGal.  Negative values of ~-75 mGal are recorded across the Coastal Basins, and within the 

Transitional Basins.  Minimum anomalies of -85 to -95 mGal are recorded across the 

Ellsworth Trough and on a single regional line towards the Whitmore Mountains.  
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The Complete Bouguer gravity anomaly was calculated to reveal the subsurface geological 

structure and regional crustal thickness variation (Fig. 4b). The 3D gravity effect due to the 

ice/air and ice/rock interfaces were calculated using a 3D fast Fourier transform method  

(Parker, 1973) at a uniform observation altitude of 2600 m. Assumed ice and rock densities 

were 917 kgm
-3

 and 2670 kgm
-3

 respectively. To ensure that shorter wavelength noise was 

not introduced we filtered the Bouguer correction with same low-pass filter applied to the raw 

free air data (9 km ½ wavelength space-domain kernel filter).  Topographic data were 

extended a minimum of 165 km from the gravity flights, allowing the computation of a fully 

terrain-corrected Bouguer gravity anomaly, equivalent to Hayford zone O.  

Errors in sub-ice topography will introduce noise into the Bouguer correction. The reported 

RMS bedrock elevation error of ~18 m from the radar data would introduce an error of 

~2mGal. However, the error in sub-ice topography is significantly lower (<1mGal) at the ~20 

km wavelengths relevant to correction of the airborne gravity data. We did not include in the 

Bouguer correction a water column beneath the floating ice shelf to the north of the survey 

area as this is poorly known. Our parameter tests show that assuming a 1000 m water column 

in place of ice  < 1mGal of error would result at a distance of ~18 km from the coast.  

The gridded Bouguer anomaly shows values of >40 mGal over the Coastal Basins, and 

negative values ~-100 mGal towards the EWM. Such variation in the Bouguer anomaly is 

likely associated with crustal thickness variations.  Additional negative Bouguer anomalies of 

20 to 40 mGal and wavelength of ~50 km coincide with the exposed Jurassic granites and 

associated positive magnetic anomalies.  Magnetic anomalies M2 and M4-M6 are also linked 

with local Bouguer negatives. In contrast, magnetic anomaly M1 is not associated with a 

negative Bouguer anomaly.   
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4 Aeromagnetic data enhancement 

4.1 Short and long wavelengths 

To investigate tectonic structures and subglacial geology in further detail, we applied a 

variety of digital enhancement techniques to the aeromagnetic data. These enhancements 

were limited to the region covered by the higher resolution grid.  Regional geological 

structures were enhanced using the 10 km upward continued magnetic anomaly map (Fig. 

5a).Upward continuation was carried out using a fast Fourier transform technique (Blakely, 

1995). The main magnetic lineaments (L1-L5) are not significantly smoothed out compared 

to the RTP data indicating that these features likely represent major structural boundaries. 

Additionally, the anomalies associated with the exposed Jurassic granites and anomalies M2 

and M4-M6 are still present, indicating that these are likely caused by thick source bodies. In 

contrast, the western end of anomaly M3 is significantly attenuated, indicating a likely 

relatively shallower and thinner source body.  A long wavelength negative magnetic anomaly 

is apparent between the Coastal Basins and Pirrit Hills.  

Shorter wavelength anomalies associated with shallower structures were enhanced by 

subtracting the upward continued anomaly grid from the initial RTP anomaly grid (Fig. 5b). 

Anomalies M2 and M3 are enhanced as are the anomalies associated with Jurassic granitic 

intrusions and anomalies M4-M6.  Additionally, it becomes apparent that the EA is formed 

by a series of shorter wavelength anomalies, approximately parallel to L1. Other short 

wavelength anomalies (M7 and M8) and lineation L6, which show the same trend as the EA, 
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become more apparent between the EA and anomaly M2.  The Coastal Basins remain 

magnetically quiet suggesting a lack of shallow magnetic sources over the region. 

 

4.2 Derivatives and magnetic lineations 

The edges of the major magnetic source bodies and structural lineations can be enhanced by 

calculating the maximum horizontal gradient of pseudo-gravity (Fig. 6a) (Blakely and 

Simpson, 1986; Cordell and Grauch, 1985). An automated algorithm was used to detect all 

peaks within the pseudo-gravity field to locate the edges of the sources (Blakely and 

Simpson, 1986) and the main lineations were then manually picked. Lineations L1-L6 and 

within EA are all recovered by this technique.  Additionally, the margins of the main positive 

magnetic anomalies associated with the Jurassic granite outcrops, and the margins of 

anomalies M4 and M6 are also located.   

To further enhance the magnetic signal we calculated the tilt angle of the RTP magnetic 

anomaly grid (Fig. 6b) (Cooper and Cowan, 2006; Miller and Singh, 1994).  The tilt angle 

responds equally well to shallow and deep sources and to a large dynamic range of 

amplitudes for sources at the same level and therefore enhances subtle low amplitude 

anomalies. The tilt angle locates the peaks of the anomalies outlined by the maximum 

horizontal gradient of pseudo-gravity.  The extent of anomalies M2 and M3 are however 

more clearly defined.  The NW-SE trending EA and the series of approximately parallel 

anomalies to the south, noted in the residual filtered data (Fig. 5b) are also apparent, and 

appear to be truncated by anomaly M2. Peaks in the tilt derivative field were calculated 

(Blakely and Simpson, 1986) and the key lineations manually picked.    
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An alternative method to locate anomaly margins and enhance lineations is the normalised 

maximum horizontal gradient amplitude (TDX) (Fig. 6c), which gives high values over 

anomaly margins (Cooper and Cowan, 2006).  This enhancement is relatively insensitive to 

the depth of the source body, and therefore improves the definition of shallow magnetic 

sources. By applying a threshold value of 0.0004 we isolated the anomaly margins.  The 

margins of the Pirrit and Nash Hills magnetic anomalies are well defined. The linear flanks of 

the Pagano Anomaly are also imaged parallel to L5. The margins of anomalies M4-6 are also 

recognised as approximately circular structures.  Between anomaly M2 and the Ellsworth 

Anomaly a generally consistent trend is observed, approximately parallel to the main 

topographic grain of the Ellsworth Mountains and lineation L6 is highlighted.  Between M2 

and the Pagano Anomaly a complex pattern of short discontinuous anomaly margins are 

suggested, with no clear regional trend.  Over the Marginal Basins fewer TDX peaks are 

recovered, which show a structural grain approximately parallel the Pagano Anomaly. 

 

4.3 Apparent and measured magnetic susceptibility 

Aeromagnetic data can be compared to measured rock properties by transforming the 

observed magnetic anomaly to apparent susceptibility (Blakely, 1995; Cordell and Grauch, 

1985). Our apparent susceptibility map (Fig. 6d), calculated from the RTP anomalies, 

assumes the tops of the source bodies are coincident with the ice/bed interface. The results of 

this calculation therefore provide minimum estimates of rock susceptibility.  If the top of the 

magnetic sources were deeper a higher susceptibility would be required. We compared the 

computed apparent susceptibility values with measurement of magnetic susceptibility held by 

the Polar Rock Repository at Byrd Polar Research Center, Ohio State University (Table 1).  
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Over anomaly M1 the estimated susceptibility is ~8x10
-3

 SI units.  This is higher than any 

values measured in the Ellsworth Mountains, or in the local nunataks, but is comparable to 

the values measured over the Proterozoic gneiss exposed in the Haag Nunataks (Flowerdew 

et al., 2007; Garrett et al., 1987; Millar and Pankhurst, 1987; Storey et al., 1994).  The lower 

amplitude Ellsworth Anomaly has an apparent susceptibility of 1-2 x10
-3

 SI, which would be 

consistent with the values measured in mafic Cambrian igneous rocks within the Ellsworth 

Mountains (Curtis et al., 1999). Higher apparent susceptibilities of 12-20 x10
-3

 SI are 

calculated over the Pirrit Hills and Pagano Anomalies.  These are an order of magnitude 

larger than measured susceptibility in the exposed Jurassic granites.   

 

5 Depth to magnetic source calculation 

To help constrain the depth and geometry of the magnetic source bodies we applied 3D Euler 

and a range of 2D magnetic depth to source techniques (Figs 7 and 8). The 3D Euler 

deconvolution method (Reid et al., 1990) returns a series of solutions for set window sizes 

and assumed structural indexes (source geometry).  We chose an 8.75 km window (5X5 grid 

cells) and assumed a structural index SI=1, which can be used to detect edges of sill and dyke 

like bodies and faults. A 5x5 window is generally adequate to detect shallower sources from 

magnetic datasets and the edges of the source bodies derived from our 3D Euler clusters are 

in good agreement with anomaly margins picked with the  TDX technique.   

The 2D techniques applied included Analytical Signal (Nabighian, 1972), Werner 

deconvolution (Ku and Sharp, 1983) and Extended Euler deconvolution (Mushayandebvu et 

al., 2001; Reid et al., 1990) (Fig 7 c-g and Fig 8 b-f). These techniques use the gradient of the 
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magnetic field along a profile within a specified window and assumptions about the source 

body to provide source depth estimates.  Data were sampled every 250 m from the final 

microlevelled magnetic anomaly grid.  To remove gridding artefacts, a 6.75 km low pass 

filter was applied to the magnetic data before calculation of the gradients.  Solutions were 

limited to be between the bed and 14 km depth.  We analysed both dyke solutions (or small 

throw fault) and contact solutions (or large throw fault). Results from Analytical Signal and 

Werner Deconvolution were calculated for incremental windows between 5 and 15 km wide, 

corresponding to the approximate wavelength of the magnetic gradient.  After calculation, 

Analytical and Werner solutions were clustered to help focus spray patterns and further 

constrain the results. Clustering was done in Oasis Montage™ and gave the average solution 

within a 1.5 by 1.5 km window, if more than 5 solutions were present. Solutions for Extended 

Euler Deconvolution assumed a fixed window of 5 km.  Our Extended Euler results showed 

few spray patterns, when a limit of 10% discrepancy between Euler and Extended Euler 

techniques was imposed; solutions for this technique were therefore not clustered. We 

compared 3D and 2D depth to source results for two regions: the Nash Hills and the Pagano 

Anomaly region (Fig 7) and the Coastal Basins region (Fig. 8).  

 

5.1 The inland profile 

3D Euler Deconvolution returns predominately well clustered shallow depth solutions around 

the Nash Hills region (Fig. 7a).  The locations of these solutions are close to the anomaly 

margins picked by the TDX enhancement, and flank the magnetic high in this area.  This area 

of shallow solutions overlies a negative Bouguer anomaly. Anomalies M4 and M6 (Fig. 7b) 

show similar patterns of depth solutions to Nash Hills, with predominately shallow depth to 
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source solutions.  The depth to source solutions for the Pagano Anomaly are more complex, 

with shallow solutions dominating along the southern flank of the anomaly, while deep 

solutions are noted to the north.  This pattern would be consistent with a northward dipping 

body as the source of the Pagano Anomaly.      

The profile over Nash Hills and the Pagano Anomaly shows the main magnetic anomalies 

(Fig. 7c) generally correlate with subglacial highlands (Fig. 7d). The 2D Analytical Signal 

method (Fig. 7e) shows both dyke and contact solutions.  Shallow Analytical solutions are 

returned beneath the Nash Hills area (consistent with 3D Euler results), extending to a depth 

of >12 km.  However, the deeper solutions are likely spray patterns. Anomaly M5 is 

associated with Analytical solutions ~ 5 km deep.  Anomaly M4 and the Pagano Nunataks 

anomaly show intermediate solutions between ~4 km and the surface. The Werner technique 

(Fig. 7e) gives a range of solutions between ~3 and ~8 km depth, mostly concentrated 

towards the northern and southern ends of the profile. The 2D Euler method (Fig. 7f) shows 

clusters of solutions close to the ice/bed interface in Nash Hills.  Similar strong clusters of 

solutions are associated with the Pagano Nunatak anomaly, though these cluster 1 to 4 km 

beneath the bed, suggesting a deeper source body.   The M5 anomaly, at the centre of the 

profile, is associated with a shallow cluster of Euler solutions, suggesting the top of this body 

is within ~2 km of the bed. Although all techniques produce broadly similar results, with 

shallow sources over the main anomalies, the results along this profile demonstrate the 

variability in depth recovered by different inversion techniques. 
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5.2 The coastal profile 

 The coastal profile crosses both the Coastal Basins and the Transitional Basins (Fig. 8).  3D 

Euler solutions show a series of clusters in this region, which broadly coincide with magnetic 

anomaly margins defined by TDX (Fig. 8a). The crest of anomaly M1 shows a series of 

shallow 3D Euler solutions, indicating a source close to the ice-bed interface.  Within the 

Coastal Basins clusters of deep 3D Euler solutions are observed.  To the west of the Coastal 

Basins shallow 3D Euler solutions are noted.  

2D Analytical signal solutions also show solutions extending almost to the ice-bed interface 

beneath anomaly M1 (Fig. 8d).  Across the centre of the basin a few deep (>10 km) analytical 

solutions are detected, before a series 4-5 km deep solutions are recorded coincident with 

anomaly M3. A series of shallower solutions ~3km deep are found beneath the Transitional 

Basins adjacent to lineations L3 and L4, which mark the margins of anomaly M1.  Werner 

solutions (Fig. 8d) across the Coastal Basin are generally shallower than Analytical signal 

results. The shallowest Werner solutions are close to anomaly M1. Fewer Werner solutions 

are found in the centre of the basin between 1 and 4 km beneath the ice/bed interface, and a 

group of solutions are found at the edge of the M3 anomaly at ~5km depth.  Euler solutions 

(Fig. 8e) show a broadly similar pattern to the Analytical solutions with the shallowest results 

close to M1 ~1km beneath the ice/rock interface and few deep results (11-13 km deep) in the 

centre of the basin. Shallow (~1 km) clusters of solutions are associated with anomaly M3, 

with the shallowest solutions beneath the Transitional Basins area.   

 

6 Forward modelling 
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Two dimensional crustal models were constructed using GM-SYS
®
 magnetic and gravity 

modelling software (Talwani and Ewing, 1960). The 2D magnetic depth-to-source estimates 

discussed previously were superimposed to provide an initial guide for our models. Magnetic 

and Bouguer gravity anomalies were both modelled with the aim of analysing intra-crustal 

features such as Jurassic intrusions, basement features, sedimentary basin extent and depth to 

Moho.  Models considered the geometry of the upper crustal structures and explored two 

alternative scenarios for crustal thickness variation, with and without mafic underplating (the 

latter to account for seismic evidence offshore - see Leitchenkov et al., 1996 and Section 8.3). 

A horizontal boundary between the upper and lower crust was imposed at 15 km depth in all 

models. This interface was included to account for the assumed increase in density between 

the upper and lower crust.  A depth of 15 km was chosen as it is below the upper crustal 

structures, above the crust-mantle boundary, and approximately coincides with the ‘Conrad 

Discontinuity’ noted in  continental seismic studies (Litak and Brown, 1989).  The horizontal 

orientation of this interface means that it does not create any gravity trend or anomaly. 

 

6.1 Inland Profile 

 Three distinct magnetic anomalies in the Nash Hills area are modelled as being caused by a 

~8 km thick magnetic igneous body, with low susceptibility ‘roof pendants’ of country rock 

at its top surface (Fig. 9a). The presence of roof pendants is consistent with local geological 

observations (Storey et al., 1988).  The modelled magnetic susceptibility of the source rock 

was 7.6 x10
-3

 SI (Table 2), i.e. an order of magnitude higher than the measured susceptibility 

(Table 1). Our modelling implies that the magnetisation of the exposed granites is not 

representative of the bulk magnetic properties of the underlying intrusive source body. The 
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Pagano Anomaly and the M4 and M5 anomalies are modelled as similar intrusive source 

bodies between 6 and 10 km thick, with susceptibilities shown in Table 2. Increasing the 

apparent magnetic susceptibilities would reduce the thickness of the modelled bodies. 

However, in order to simultaneously fit the gravity lows larger negative density contrasts 

would be required.  

Gravity modelling is generally insensitive to the absolute depth of the Moho and helps reveal 

the relative change in crustal thickness. For the gravity model we assumed an initial crustal 

thickness of 30 km. A thickness of 27 km was estimated from seismic refraction and spectral 

analysis of gravity data for the Ronne Ice Shelf area (Fig 1) (Studinger and Miller, 1999). A 

~3 km relative increase in crustal thickness inland can account for the observed inland 

decrease in Bouguer gravity anomaly from the Weddell Sea. Densities assumed for mantle 

and lower crust are shown in Table 2 and followed previous models for the Weddell Sea 

Embayment region (Studinger and Miller, 1999).  

The Bouguer anomaly on the inland profile shows a general increasing trend from EWM to 

East Antarctica and a gravity high (B1) in the area of the Transitional Basins, which we fit by 

introducing crustal thinning to ca 28 km beneath the basins.   A quiet magnetic anomaly 

signature corresponds to the area of B1 between magnetic anomalies M5 and M4 and was 

modelled by introducing sedimentary infill in the Transitional Basins. Negative Bouguer 

anomaly B2 is explained by the deeper lower density intrusion I2. 

The observed 20-50 km wavelength negative Bouguer anomalies B3 and B4 correlate with 

positive magnetic anomalies and exposures of Jurassic granite at Nash Hills and Pagano 

Nunatak (Fig. 9a).  Granitic rocks have a wide density range of 2500-2810 kgm
-3

 (Telford et 

al., 1990).  Assuming a minimum density of 2500 kgm
-3 

the minimum thickness for the 
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granitic source body in the Nash Hills region is 5.6 km.  A higher density of 2550 kgm
-3

 

would suggest a granitic body ~8.5 km thick. The modelled intrusions appear to lie at the 

lower end of the density range typical of granitic rocks, which is reasonable given that the 

outcropping granites have high SiO2  (70-75 wt. %) and K-feldspar rich compositions 

(Vennum and Storey, 1987b). Applying a density of 2550 kgm
-3

 to all the magnetic bodies on 

the inland profile generally provided a good match to the observed Bouguer gravity 

anomalies (Fig. 9a).  

6.2 Coastal Profile 

Along the Coastal Profile (Fig. 9b) the magnetic source body for anomaly M1 was modelled 

as a high susceptibility basement block (C1), based on the high apparent magnetic 

susceptibility (see also Fig. 6d).  Clusters of depth to source solutions close to the bed 

suggested a shallow top of C1. A good fit for the transition between M1 and the magnetically 

quiet Coastal Basins was obtained by extending the flanks of C1 to depths of over 10 km.  

Clusters of Werner solutions within the Coastal Basins at ~3.5 km depth are interpreted as the 

base of an inferred sedimentary basin (S).  Depth solutions beneath anomaly M3 locate the 

top of intrusive body C2 ~2.5 km below the bed. The thickness of the intrusion is ~1 km,  

assuming an apparent magnetic susceptibility and density contrast similar to the intrusions 

along the inland profile.  

Our gravity models show that the regional trend in the Bouguer anomaly can be accounted 

for by assuming a ~4 km step in crustal thickness towards the Ellsworth Mountains.  We also 

assumed that basement block C1 has a higher apparent density of 2700 kgm
-3

, relative to the 

upper crustal metasediments.  Bouguer anomaly B5 overlies the Coastal Basins and is 

modelled as reflecting ~2 km thick sedimentary infill (S).  An apparent density of 2500 kgm
-3
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created a ~-8 mGal anomaly, which is close to what is observed.  Assuming Airy isostatic 

compensation a~2 km thick sedimentary infill would yield ~1 km of additional crustal 

thinning.  A lower density of 2300 kgm
-3

, as inferred for sediments beneath the Ronne Ice 

Shelf (Aleshkova et al., 2000), was also tested. However, this resulted in a larger negative 

anomaly of >20 mGal.  Tests showed that sedimentary infill between 1 and 3 km thick could 

fit the gravity data equally well, with minor modifications to density and crustal thickness.  

 

6.3 Alternative gravity models including magmatic underplating 

Our starting gravity models discussed above assume a 27-30 thick crust for the inland extent 

of the Weddell Sea Rift and a standard crust-mantle density contrast (Studinger and Miller, 

1999). However, a shallower Moho depth of ~24 km has been inferred onshore from a single 

seismic reflection point (see Fig. 2a for location) (Behrendt et al., 1974).   Additionally, 

widespread magmatic underplating has been seismically imaged at the margins of the Ronne 

Ice Shelf (Leitchenkov and Kudryavtzev, 2000).  Hence we computed two alternative gravity 

models for the inland and coastal profile, assuming a thinner crust and an anomalous high 

density underplated layer at the crust-mantle interface (Fig. 10). In the alternative models we 

assumed that the upper crustal structure was the same as shown in Figure 9. Bouguer 

anomaly B1 on the inland profile can be modelled by assuming a ~8 km thick high density  

body at the base of the crust interpreted as magmatic underplating (Fig. 10a).  Along the 

coastal profile the modelled underplated body is less extensive and only ~3 km thick, and the 

Moho has greater relief (Fig. 10b).  
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7 Interpretation  

A new geological sketch map of the inland margin of the Weddell Sea Rift was compiled 

based on a combination of aeromagnetic, gravity and geological data and forms the basis to 

discuss the subglacial geology and tectonic architecture of the region (Fig. 11).   

7.1 Proterozoic basement and Cambrian rift-related igneous rocks 

The broad magnetic low over the EWM reflects the over 10 km thick Paleozoic 

metasedimentary sequences as previously modelled from reconnaissance aeromagnetic data 

(Fig.10 in (Maslanyj and Storey, 1990)). Permian-Triassic folds and faults within the exposed 

metasediments trend ~NNW-SSE in the northern Ellsworth Mountains and NW-SE in the 

southern Ellsworth Mountains (Curtis, 2001). The NW-SE structural grain has also been 

mapped at Pirrit and Nash Hills in the Ellsworth Domain (Storey and Dalziel, 1987). The 

dominant magnetic lineations we observe have an ESE-WNW orientation (Fig. 11a and Fig. 

11b2). These lineations may reflect Permo-Triassic transpressional deformation structures 

and/or basement structural grain.  

Magnetic anomalies M1, EA and anomalies M7 and M8 are interpreted as revealing 

Proterozoic basement and Cambrian rocks (Fig. 11c).    Highly magnetic and dense 

Proterozoic basement similar to the gneissic basement exposed in the Haag Nunataks 

(Flowerdew et al., 2007; Garrett et al., 1987; Millar and Pankhurst, 1987; Storey et al., 1994) 

is interpreted as the source of magnetic anomaly M1.   The southward increase in 

stratigraphic age along the Ellsworth Mountains (Curtis, 2001) and the petrology of 

Cambrian igneous exposed rocks in the Ellsworth Mountains (Curtis et al., 1999) support our 

interpretation for Late Proterozoic basement of the EWM.  The higher frequency EA, M7 and 
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M8 magnetic anomalies trace the subglacial extent of  Cambrian rift-related igneous rocks 

that outcrop within the Ellsworth Mountains (Curtis et al., 1999; Vennum et al., 1992).  

 

7.2 Jurassic intrusions 

Previous models of the magnetic anomalies within the EWM region predicted that ~5-10 km 

thick Jurassic granites with low susceptibility were underlain by 10-12 km thick mafic 

intrusions (Garrett et al., 1988).  However, our magnetic depth to source solutions suggest 

that the intrusive bodies that cause the anomalies are significantly shallower (Figs 7 and 8) 

and our gravity models do not require the presence of underlying mafic intrusions (see also 

discussion).  The exposed granites in both the Ellsworth and Marginal domains have been 

dated to between 173 and 175 Ma  and appear to be undeformed (Storey et al., 1988). 

However, at Hart Hills sheared quartz-gabbro has been reported (Vennum and Storey, 

1987a). We note that the circular magnetic highs and gravity lows typical of the Pirrit Hills 

and Nash Hills region differ from the more elongate magnetic highs and gravity lows at the 

transition between the Ellsworth and Marginal Domains. It is possible therefore that different 

suites of Jurassic intrusions are present with the more elongate intrusions being emplaced 

along a major fault zone, as we discuss in the following section.  

 

7.3 The Pagano Shear Zone 

Structural observations within the Marginal Domain reveal dominant NE-SW trends within 

highly deformed Paleozoic metasediments, which is normal to structural trends within the 

Ellsworth Domain (Storey and Dalziel, 1987). The Transitional Basins and their flanking 
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highlands represent the most remarkable topographic features of the Marginal Domain region 

(Fig. 3a). Magnetic anomalies M2-M3 and the Pagano Anomaly lie north of the Marginal 

Domain and are interpreted as reflecting Jurassic intrusions. Our rose diagram shows that 

magnetic lineations within this region have a dominant ~E-W trend and a subsidiary ~ENE 

trend (Fig 11 b3). These magnetic lineations directions are interpreted as reflecting faults and 

the margins of Jurassic intrusions. By analysing these magnetic lineations we propose several 

alternative kinematic interpretations for the regional stress field. Using detailed maps and 

profiles of the topography and magnetic anomalies we interpreted the location and orientation 

of structural boundaries and intrusions in the Transitional Basins region (Figure 12). The 

Transitional Basins have a right-stepping en-echelon pattern that is typical of strike-slip fault 

systems (Reading, 1980). We propose that the E-W magnetic trends image the Principal 

Displacement Zone of the strike-slip fault system with the ENE trends reflecting synthetic 

shears and the NE-SW trends representing normal faults. As shown in Figure 11 b4 our 

magnetic interpretation is compatible with the pattern of faulting and the strain ellipse for 

left-lateral strike-slip fault systems (Lodolo et al., 2003; Reading, 1980). There is a close 

spatial relationship between the Pagano Anomaly and the inferred strike-slip fault system. 

Our preferred interpretation predicts that the boundary between the Ellsworth Domain and the 

Marginal Domain is represented by the left-lateral Pagano Shear Zone, which in turn 

controlled the location of the Jurassic intrusions (Fig. 11c).   

Magnetic lineament analysis alone does not provide definitive structural geological 

interpretations or kinematic solutions. The limitations in using aeromagnetic data for 

structural analysis include difficulties in gleaning information from non-magnetic rock 

packages and the non-uniqueness of geological source characterisation through magnetic 

imaging and modelling (Betts et al., 2003). Consequently, alternative interpretations of fault 
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zones based on aeromagnetic imaging are often presented (Ferraccioli and Bozzo, 2003). We 

put forward two possible alternative interpretations for the tectonic boundary between the 

Ellsworth and Marginal domains. The first one predicts that the NE-SW magnetic trends 

reflect Permo-Triassic or older basement grain of the Marginal Domain as opposed to 

synthetic left-lateral shear zones. The E-W oriented magnetic grain appears to truncate the 

NE-SW magnetic fabric (e.g. Fig. 12b) and could represent an extensional fault zone that 

became leaky facilitating the emplacement of Jurassic intrusions. However, this would 

require ~N-S oriented extension that is rotated ~90° compared to the E-W oriented extension 

previously suggested with the southern Weddell Sea Rift (Ferris et al., 2000), see also Section 

8.1). The second alternative is that both the NE-SW and the E-W magnetic trends are 

imaging normal faults related to NW-SE and N-S oriented extension directions. These 

alternative scenarios cannot be ruled out but would require a more complex triaxial strain 

regime at the southern end of the Weddell Sea rift, which may be akin to the rift-rift-rift triple 

junction model suggested at the northern end of the Weddell Sea Rift (Ferris et al., 2000).  

 

7.4   The Coastal Basins 

Magnetic depth to source solutions and gravity and magnetic models lead us to interpret the 

Coastal Basins as underlain by ~2 km of low density sedimentary rock (Fig. 9b). The smooth 

bed within the Coastal Basins (Ross et al., 2012) supports our interpretation for sediments in 

the region  (see also Fig 13 g).  To assess the location and orientation of structural boundaries 

in the Coastal Basins region we show detailed maps and profiles of the topography and 

magnetic anomalies in Figure 13. The maps reveal that the Western and Southern basin 

margins have distinct N-S and E-W trends. The N-S trend is parallel to rift fabric within the 
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Weddell Sea Rift (see Section 8.1). The E-W trend corresponds to the orientation of the 

Pagano Shear Zone (Fig 11 b). The age of the sediments modelled within the Coastal Basins 

is not known.  However, rifting is typically followed by thermal subsidence, and the 

deposition of sediments in a passive margin setting (Royden and Keen, 1980; White and 

McKenzie, 1988).  We therefore suggest the modelled sediments in the Coastal Basins post-

date Jurassic rifting, as proposed also for sediments imaged beneath the Ronne Ice Shelf 

(Studinger and Miller, 1999).     

         

8 Discussion 

We combined our aerogravity and aeromagnetic data with adjacent gravity and magnetic 

datasets and with satellite gravity data to discuss tectonic and magmatic features of the 

Weddell Sea Rift (Fig. 14). 

 

8.1 Inland extent of the Mesozoic Weddell Sea Rift 

Our new airborne gravity data reveal the inland extent of the Mesozoic Weddell Sea Rift. The 

N-S orientation of the positive Bouguer anomaly we mapped beneath the Coastal Basins 

region is similar to the southern part of the Weddell Rift gravity Anomaly (Aleshkova et al., 

2000) (Fig. 14a). According to our 2D gravity models the inland extent of the Weddell Sea 

Rift features ~4 km of crustal thinning compared to the adjacent EWM region (Fig. 9b). We 

see no evidence for a connection between the inland extent of the Mesozoic Weddell Sea Rift 

and the Mesozoic to Cenozoic West Antarctic Rift System (Dalziel, 2006). The combination 

of our airborne gravity, satellite gravity (Pail et al., 2010) and a single land gravity traverse 
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(Behrendt et al., 1974) clearly reveals the boundary between the inland extent of the Weddell 

Sea Rift and East Antarctica. The ~E-W trend of the boundary is particularly clear from 

satellite gravity data (Fig 14b) and appears to lie on strike with the trend of the inferred 

Pagano Shear Zone. N-S oriented magnetic trends are well defined within the Weddell Sea 

Rift (Fig. 14c) (Golynsky et al., 2000) and lie on strike with the trends we identified along the 

flanks of the Western Basin (Fig 13b) . This supports our interpretation of the inland extent of 

the Mesozoic Weddell Sea Rift in the Coastal Basins region. The inferred Pagano Shear Zone 

however lies at high angle to the Weddell Sea rift fabric as previously noted.  

 

8.2 Pagano Shear Zone and the boundary between East and West Antarctica.  

Our preferred interpretation of the Pagano Shear Zone has important geodynamic 

implications for tectonic reconstructions of the Weddell Sea region that have not considered 

the possibility of a major left-lateral strike-slip system within the region. The magnetic trends 

within the Weddell Sea Rift have been interpreted as resulting from either basement blocks 

bounded by extensional rift-related fault systems (Ferris et al., 1998; Golynsky et al., 2000) 

and/or Jurassic intrusions (Ferris et al., 2000; Golynsky et al., 2000).  Additionally, 

aeromagnetic interpretations along the edge of East Antarctica, in the region between Berkner 

Island and the Dufek Intrusion, suggested the existence of a ~N-S oriented dextral strike-slip 

Jurassic fault system and a ~E-W oriented normal fault system (Figs. 14d and 15). However, 

in our preferred interpretation the E~W trends represent the continuation of the left-lateral 

Pagano Shear Zone in the Thiel Trough region.  

We consider two alternative kinematic interpretations for the southern edge of the Weddell 

Sea Rift and for the boundary between East and West Antarctica. In the simple shear model 
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~E-W oriented extension within the Filchner Rift is accomodated by left-lateral strike-slip 

motion on the Pagano Shear Zone (Fig. 16a). The shear zone would enable eastward motion 

of the EWM block relative to East Antarctica, which is permissible given that a variety of 

geological and paleomagnetic reconstructions have indicated that the EWM is a micro-plate 

that was displaced from an original pre-Gondwana break-up position closer to East Antarctica 

(Curtis and Storey, 1996; Randall and MacNiocaill, 2004). In the more complex pure shear 

model the sinistral and dextral faults are conjugate fault systems (Fig. 16b).  A pure shear 

system would however imply a more NW-SE oriented extension in the Weddell Sea Rift and 

NE-SW oriented compression in the hinge zone between the strike-slip fault systems. Field 

and experimental studies over V-shaped conjugate strike-slip faults suggest that the simple 

shear and pure shear cases are likely be to be end-member models and that more complex 

non-coaxial fault patterns are likely (Yin and Taylor, 2011).     

  

8.3 Jurassic granites and magmatic underplating hypothesis 

We have interpreted ~circular Jurassic intrusions as emplaced at the transition between the 

thicker crust of the EWM and the inland extent of the Weddell Sea Rift and more elongated 

structurally-controlled intrusions along the flanks of the Pagano Shear Zone (Fig 11c). 

Petrological and geochemical studies indicate that the exposed Jurassic granites have 

geochemical affinities with an enriched mantle-derived mafic-ultramafic magma source 

similar to the Ferrar LIP and exhibit a degree of crustal contamination (Storey et al., 1988). 

Rift-related granites are often associated with mafic magmatism.  For example, during the 

breakup of Rodinia granitic magmatism was coeval with mafic magmatism along the margins 

of the Congo Craton (Tack et al., 2001) and in China (Li et al., 2003). Along the Cretaceous 
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rifted margin of Namibia exposed granites have been linked to underlying gabbroic rocks 

imaged by magnetic, gravity and seismic data (Bauer et al., 2003). In the case of the granites 

at inland edge of the Weddell Sea Rift significant uncertainties surround the existence, 

location and depth of the hypothesised mafic magma sources.  Previous interpretations of 

aeromagnetic data suggested that the Jurassic granites are directly underlain by >10 km thick 

mafic intrusions in the upper crust (Garrett et al., 1988), which could speculatively provide 

the inferred mafic source required by the geochemical data. However, the aeromagnetic 

anomalies we observed differ from the much higher amplitude anomalies detected over the 

Dufek mafic-ultramafic intrusion (Ferris et al., 1998; Ferris et al., 2003) and the higher 

frequency anomalies over the thin Ferrar sills (Ferraccioli et al., 2009a; Ferraccioli et al., 

2009b; Shepherd et al., 2006). From a more general perspective, magnetic anomaly patterns 

per se do not require mafic source rocks. Magnetic susceptibility patterns of granitic rocks are 

determined by their bulk chemistry and magnetic mineralogy.  Around the world, the values 

reported for magnetic susceptibility in granites range widely from 10
−6

 [SI] in leucocratic 

granites up to 10
−1

 [SI] in some granodiorites and tonalities (Gregorová et al., 2003). The 

Saruhan granites in Turkey provide an example of zoning pattern of magnetic susceptibility 

across the plutons with the highest values of magnetic susceptibility in the center. The most 

differentiated rock types have high SiO2 content and low magnetic susceptibility and exposed 

are at the rim of the intrusions (Aydın et al., 2007). We infer that the weakly magnetic 

exposed Jurassic granites of the Ellsworth and Marginal domains may exhibit similar zoning 

with a more magnetic ferrimagnetic granitic core. Our gravity models (Fig. 9) do not require 

high density intrusions in the upper crust, which generally image mafic intrusions (Telford et 

al., 1990).  The 20 to 40 mGal negative Bouguer anomalies we observed over the Jurassic 

intrusions differ from the positive Bouguer anomalies observed, for example, over Jurassic 
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alkaline intrusions of the Jutulstraumen rift, which have been interpreted to be underlain by 

~10 km thick mafic intrusions (Ferraccioli et al., 2005). The negative Bouguer anomalies we 

observed are more comparable to those typically observed over several km-thick granite 

plutons elsewhere in the world (Améglio and Vigneresse, 1999; Taylor, 2007; Zeng et al., 

2000). In the Permian age Oslo rift, joint interpretation of petrophysical, magnetic, gravity 

and seismic data have been used to propose that thin granitic intrusions are underlain by ~10 

km thick mafic intrusions with no associated positive Bouguer gravity anomaly (Ebbing et 

al., 2007). The lack of gravity signature of the mafic intrusions inferred beneath the Olso Rift 

is due to the anomalously dense upper crust (Ebbing et al., 2007). A similar scenario may be 

possible also for the edge of the EWM, which are inferred to be underlain at least in part by 

Proterozoic basement (that could be anomalously dense). However, the lack of independent 

geophysical and geological constraints makes this alternative scenario difficult to either 

validate or refute.  

We explored a simpler scenario in our gravity models, which involves mafic to ultramafic 

magmatic underplating at the base of the crust beneath the exposed Jurassic granites. Our 

modelling revealed that with a flat Moho assumption the thickness of the underplated layer 

beneath the Ellsworth and Marginal Domains is ~8 km. In contrast, assuming ~4 km of 

crustal thinning beneath the Coastal Basins region a ~3 km thick layer of magmatic 

undeplating is modelled (Fig. 10).  Seismic velocities associated with underplated mafic 

rocks at the Greenland margin (Voss and Jokat, 2007) and in Namibia (Bauer et al., 2003) are 

comparable to those imaged at the front of the Ronne Ice Shelf, where extensive magmatic 

underplating has also been interpreted (Leitchenkov and Kudryavtzev, 2000). If magmatic 

underplating does continue inland beneath our study region then it would extend ~900 km 

from the outer edge of the Ronne Ice Shelf to the EWM. The hypothesis for widespread 
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magmatic underplating is attractive as it could provide a thermal source for partial melting of 

the EWM crust and the missing mafic magma source required to explain the geochemical 

signatures of the Jurassic granites (Storey et al., 1988). However, independent constraints on 

crustal thickness and lower crustal and upper mantle seismic velocities are required to test the 

viability of the magmatic underplating hypothesis further.  

 

9 Conclusions 

We have presented a new integrated aerogeophysical dataset including airborne radar, 

aeromagnetic, and aerogravity data that shed new light on the inland extent of the Mesozoic 

Weddell Sea Rift in Antarctica. A combination of digital enhanced aeromagnetic maps, 

coupled with depth to magnetic source and joint magnetic and gravity models, enabled us to 

map the subglacial geology and deeper crustal structure of the region. Specifically, we 

interpreted the data to compile a new geological sketch map portraying the subglacial extent 

of Proterozoic basement, Cambrian volcanic and Permo-Triassic metasedimentary rocks, 

Jurassic intrusions, and inferred post-Jurassic sedimentary infill in the Coastal Basins. Our 

structural interpretation, based on the analysis of magnetic patterns and lineations, reveals a 

hitherto unknown major fault zone that we call the Pagano Shear Zone. The proposed left-

lateral shear zone forms a regional tectonic boundary between the Ellsworth and Marginal 

domains, and likely represents a major fault separating the EWM block in West Antarctica 

from East Antarctica. We also infer that the Pagano Shear Zone may have facilitated the 

emplacement of Jurassic intrusions and accommodated southwards motion of the EWM 

block during the Jurassic opening of the Weddell Sea Rift. Our gravity modelling provides no 

support for previously inferred upper crustal mafic intrusions beneath the Jurassic granites of 
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the EWM region. Although the mafic underplating hypothesis would adequately explain the 

geochemical evidence from the Jurassic granites, the airborne geophysical data alone cannot 

differentiate the crustal thinning and underplating hypothesises. Seismic investigations are 

required to provide independent constraints on crustal thickness and magmatic underplating.   
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Figure 1. Regional tectonic setting of the Weddell Sea Rift superimposed on bed elevation 

and bathymetry data from BEDMAP (Lythe et al., 2001) and Bouguer anomaly data 

(Studinger and Miller, 1999). The grey box marks the ~27 km thick rifted continental crust in 

the Central Trough (CT) region (Studinger and Miller, 1999). White dashed lines define the 

main tectonic blocks of West Antarctica (Dalziel and Elliot, 1982): Ellsworth-Whitmore 

Mountains block (EWM); AP (Antarctic Peninsula); TI (Thurston Island); and MBL (Marie 

Byrd Land). Red box marks our study area over the inland extent of the Weddell Sea Rift and 

adjacent EWM.  The Explora and Orion magnetic anomalies are outlined in yellow and relate 

to Jurassic magmatism and rifting in the Weddell Sea Embayment (Hunter et al., 1996).  Pink 

lines mark rift zones (Aleshkova et al., 2000) and include the Filchner Rift (FR) and Weddell 

Rift Anomaly (WRA). IIS:Institute Ice Stream; MIS:Möller Ice Stream; HN: Haag Nunataks; 

RIS: Ronne Ice Shelf; BI: Berkner Island; DI: Dufek Intrusion; TT:Thiel Trough; TAM: 

Transantarctic Mountains.  

Figure 2. a) Location of the aerogeophysical survey (magenta) and regional geology overlain 

on RADARSAT image of the ice surface (Liu et al., 2001). Dashed yellow outline marks 

inferred margin of EWM block  and the dashed white line marks the location of the inferred 

tectonic boundary between East and West Antarctica (Dalziel and Elliot, 1982). Note the 

location of the Ellsworth and Marginal domains (Storey and Dalziel, 1987).  Age of Jurassic 

granites shown in white from Storey et al., (1988). Dashed white and black lines in this and 

subsequent figures depict the location of our magnetic and gravity models. The red box 

denotes the only available estimate of crustal thickness from seismic data in the survey area 

(Behrendt et al., 1974). Black dashed lines mark catchment boundaries for the Institute and 

Möller Ice Streams. b) Aerogeophysical flight lines are shown in red and blue sections mark 

areas where aerogravity data were recovered. The four survey elevation blocks are shown in 
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yellow. Previous survey lines over West Antarctica (Bell et al., 1998; Vaughan et al., 2006), 

and East Antarctica (Ferris et al., 2003) are shown in pink. C110 and Patriot Hills (green 

triangles) mark the two field camps and locations of magnetic base stations. 

Figure 3. New subglacial topography and total field aeromagnetic anomaly map.  a) 

Subglacial topography. Solid yellow lines define margins of the Transitional Basins and solid 

white lines mark edges of the Marginal Basins. Note that the Coastal Basins include the 

Western and Southern basins.  Abbreviations are; PH: Pirrit Hills; NH: Nash Hills; HH: Hart 

Hills; PN: Pagano Nunatak; SH: Stewart Hills; TM: Thiel Mountains; WM: Whitmore 

Mountains. Other features as in Figure 2a. b) Reduced To the Pole (RTP) aeromagnetic data.  

Anomalies M1 and EA (Ellsworth Anomaly) are interpreted as Proterozoic basement and 

Cambrian igneous rocks respectively. Magnetic anomalies overlie exposed Jurassic granites 

(PH, NH and PN) and anomalies M2-M6 are interpreted as reflecting buried Jurassic 

intrusions. L1-L5, and L7 denote major magnetic lineaments.  Note Transitional Basins 

marked as black lines. Red box marks detailed study area in Figures 5-6. 

Figure 4. New aerogravity data. a) Free air anomaly map.  b) Bouguer anomaly map.  Note 

the contrast between the positive Bouguer anomaly field over the proposed inland extent of 

the Weddell Sea Rift and the broad low over the thicker crust of the EWM. Shorter 

wavelength negative Bouguer anomalies generally correspond to positive magnetic anomalies 

(pink outline) over exposed and buried Jurassic intrusions.    

Figure 5. a) Aeromagnetic anomalies upward continued to an elevation of 10 km. The main 

magnetic anomalies seen in the original total field data are maintained suggesting that thick 

source bodies are causing the anomalies. b) Residual wavelengths after subtraction of 10 km 

upward continued field from the RTP anomaly grid. Shorter wavelength anomalies associated 
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with shallower and thinner source bodies are enhanced in this presentation (e.g. anomalies 

M7 and M8 that are interpreted as reflecting Cambrian igneous rocks). 

Figure 6. a) Maximum horizontal gradient of pseudo-gravity with superimposed magnetic 

lineations in white.  b) Tilt derivative magnetic map showing lineaments over anomaly crests. 

c) Anomaly margins (black outlines) from the normalised maximum horizontal gradient of 

the tilt derivative (TDX) overlain on subglacial topography.  d) Apparent magnetic 

susceptibility calculated from aeromagnetic anomaly data. White boxes locate maps in 

Figures 7 and 8. 

Figure 7. Depth to source calculations along the inland profile located in Fig. 6. a) Map of 

3D Euler solutions (coloured circles) over the Nash Hills region. Background coloured image 

shows Bouguer gravity anomaly overlain on contoured magnetic anomalies (10 nT contour 

interval) and anomaly margins from TDX (black outline).  Note that the outcrops of weakly 

magnetic Jurassic granite (pink) lie at the edges of the magnetic anomalies (see Section 8.3 

for discussion). Solid black line marks the trace of the 2D depth to source profile. b) Same as 

above over the Pagano Anomaly region. Jurassic granites at Pagano Nunatak (PN) lie at the 

margin of the anomaly. Note the deeper estimated source depths for the Pagano Anomaly 

compared to the Nash Hills region and the location of quartz-gabbro rocks (red) at Hart Hills 

(HH). c) Profile of magnetic anomaly (black), and 2D horizontal (dh) and vertical (dz) 

derivatives of the magnetic field (grey). d) Ice surface (grey) and subglacial topography 

(black). e) Depth to source solutions for contact and dyke bodies from 2D Analytical Signal 

(blue) and Werner Deconvolution (red) are shown as circles and diamonds respectively. Note 

the shallow clusters of solutions over the Jurassic granites of the Nash Hills region and the 

paucity of solutions over the Transitional Basins indicative of weakly magnetic 
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metasediments and/or sediments. f) 2D Extended Euler solutions for structural index 0 

(contact and large throw fault) and 1 (dyke and low-throw fault) are shown in magenta and 

orange respectively. Note the deeper clusters obtained for the Nash Hills and Pagano 

Anomaly in the dyke model.  

Figure 8.  Depth to magnetic source calculations across the Coastal Basins (outlined in 

white). a) 3D Euler solutions (coloured dots). Background colour image shows the Bouguer 

gravity anomalies overlain on the contoured magnetic anomalies (10 nT contour interval) and 

anomaly margins from TDX (black outline). Solid black line marks 2D profile. b) Magnetic 

anomaly (black), and horizontal (dh) and vertical (dz) derivatives of the magnetic field 

(grey). Note the higher amplitude magnetic anomaly M1 attributed to Proterozoic basement 

and anomaly M3 interpreted as reflecting Jurassic intrusions flanking the Coastal Basins and 

the quiet magnetic pattern within the basins. Also note the position of magnetic lineaments 

L3 and L4. c) Ice surface (grey) and subglacial topography (black). d) Depth to source 

solutions for contact and dyke bodies from 2D Analytical Signal (blue) and Werner 

Deconvolution (red) are shown as circles and diamonds respectively.  Two clusters of 

shallow source solutions within Coastal Basins are used to help constrain potential 

sedimentary thickness within the basins. e) 2D Extended Euler solutions for structural index 0 

(contact and large throw fault) and 1 (dyke and low-throw fault) are shown in magenta and 

orange respectively. Shallower solutions within the Coastal Basins are not apparent from 

Extended Euler estimates but deeper solutions are consistent with previous models for over 

10 km thick metasediments overlying magnetic Proterozoic basement (Maslanyj et al., 1990). 

Figure 9. 2D forward magnetic and gravity models. a) Inland crustal model crossing Nash 

Hills and the Pagano Anomaly. Panel 1 shows observed and calculated aeromagnetic 
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anomalies (dashed grey and black lines respectively). Solid grey line shows residual error. 

Panel 2 shows observed  and calculated Bouguer gravity anomaly (grey dashed and solid 

lines respectively). Solid grey line shows residual error. Panel 3 shows model crustal 

structure and depth to source solutions. Light grey circles=Werner Deconvolution solutions 

and Triangles=Analytical Signal solutions. Dark grey and black solutions mark Extended 

Euler Deconvolution results for 5 and 20 km windows.    The starting model included upper 

crust (light grey), lower crust (intermediate) and mantle (dark grey) interfaces. Magnetic 

susceptibility and densities of the bodies are set out in Table 2. The positive magnetic 

anomalies and negative Bouguer gravity anomalies (B2-B4) are modelled as reflecting 5-8 

km thick Jurassic intrusions (I1-I5). Note the thin sediments modelled beneath the 

Transitional Basins (S). The long-wavelength Bouguer anomaly high (B1) over the 

Transitional Basins is modelled as arising from ~3 km of crustal thinning beneath the basins. 

(b) Crustal model across the Coastal Basins. Panels as in (a).  Magnetic anomaly M1 is 

modelled as arising from >10 km thick Proterozoic basement (C1) and M3 as arising from a 

thin Jurassic intrusion (C2). The thickness of the inferred sedimentary infill in the Coastal 

Basins (S) is constrained from Werner solutions and gravity modelling (anomaly B5) as ~2 

km thick. Note ~4 km of crustal thinning beneath the Coastal Basins interpreted as reflecting 

the inland continuation of the Weddell Sea Rift.  

Figure 10. Alternative models for the inland and coastal profiles incorporating magmatic 

underplating beneath the Jurassic intrusions. Other features as in Figure 9.   

 Figure 11. a) Interpreted magnetic lineations are shown in magenta and overlain on Radarsat 

image, geology and structural domains (Blue=Ellsworth Domain; Red= Marginal Domain; 

Orange=East Antarctica). Yellow lines mark edges of main magnetic anomalies (labels as in 
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previous figures). Black lines denote the Transitional Basins and green shaded area shows 

inferred sediments in the Coastal Basins. White boxes denote the location of the detailed 

views shown in figures 12 and 13. b) Rose diagrams for magnetic lineations and strain 

ellipse. b1. All magnetic lineations for the study area within a 5 degree bin. Note that the data 

are plotted relative to the 80° W (N-S) axis. b2. Magnetic lineations within the Ellsworth 

Domain revealing a dominant ESE-WNW orientation. b3. Magnetic lineations within the 

Marginal Domain interpreted as predominantly reflecting the Pagano Shear Zone, a major 

left-lateral strike-slip fault zone (see also b4). Note that the ~E-W trends are interpreted as 

left-lateral P shear zones and the ENE-WSW trends are inferred to represent subsidiary 

synthetic shear zones (SS). Other ~N-S and NE-SW trends are less clear but may reflect 

antithetic shear zones and normal faults respectively. b4. Strain ellipse for a left-lateral strike 

slip fault system and orientation of fault patterns with respect to the Principal Displacement 

Zone (PDZ). (Lodolo et al., 2003). c)  New geological sketch map derived from magnetic and 

gravity interpretation overlain on the Radarsat image.  The left-lateral Pagano Shear Zone 

(magenta area) is interpreted as forming the tectonic boundary between the Marginal and 

Ellsworth domains and is marked by major magnetic lineations (L2-L5). The thin black lines 

denote the en-echelon Transitional Basins inferred to be structurally controlled and related to 

the Pagano Shear Zone. Note in the Western Basin region the thick black line (L7) interpreted 

as a rift-related fault that flanks a Proterozoic horst-block (M1). The inferred fault is aligned 

to rift fabric in the Weddell Sea Rift as shown in figure 14. In the Southern Basin region 

magnetic lineament L3 is interpreted as the margin of the Pagano Shear Zone, which is 

inferred to control the location of elongated Jurassic intrusions. More circular Jurassic 

intrusions are also delineated over the EWM and within the shear zone. The inferred post-

Jurassic(?) sedimentary infill in the Coastal Basins region is also shown.    
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Figure 12. Detailed view of the Transitional Basins within the Pagano Shear Zone. a) 

Subglacial topography map and TDX magnetic anomaly margins (black) used to assess 

structural controls on the en-echelon basins. Colour scale as in Figure 3a. White lines mark 

locations of profile below. b) Magnetic anomaly map and TDX anomaly margins. Colour 

scale as in Figure. 3b. E-W oriented magnetic anomaly margins are interpreted as reflecting P 

shear zones. The ENE-WSW trends are inferred to represent subsidiary synthetic shear zones 

(SS) and the NE-SW trends are interpreted as normal faults (N). c) Profile view of the 

magnetic anomalies. Vertical black lines mark margins of the Pagano Anomaly (PA) and 

anomaly M2. d) Bouguer anomalies. Note negative values over the flanks of the Transitional 

Basins interpreted as reflecting lower density granitic Jurassic intrusions. e) Maximum 

horizontal gradient of pseudo–gravity showing clear peaks over the margins of the Pagano 

Anomaly interpreted as reflecting the P shear zones. f).  The tilt derivative (green) enhances 

magnetic anomaly M2 and high frequency anomalies within the Transitional Basins. The 

TDX profile enables identification of inferred normal faults (N) and synthetic shear zones 

(SS). g) Subglacial topography profile showing ~1.2 km of relief between the bed of the 

Transitional Basins and its flanks. Several magnetic lineations are used to locate inferred 

faults associated with the ridges and sub-basins within the Transitional Basins.  The crosses 

denote the inferred Jurassic granitic intrusions that cause the magnetic anomalies.   

Figure 13. Detailed view of the Coastal Basins. a)  Subglacial topography map and TDX 

magnetic anomaly margins (black) used to assess structural controls on the Western and 

Southern basins. Colour scale as in Figure 3a. Red lines mark locations of profiles below. b) 

Magnetic anomaly map and TDX anomaly margins. Colour scale as in Figure. 3b. The ~N-S 

oriented magnetic lineament L7 is ~ on strike with rift fabric in the Weddell Sea and lies 

~orthogonal to the EWM structural grain (e.g. magnetic lineament L1 and EA anomalies in 
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figure 11a). The ~E-W magnetic grain along the flanks of anomaly M3 (magnetic lineaments 

L3 and L4) lie on strike with the Pagano Shear Zone. c) Magnetic anomalies along profiles 

P1 (left panel) and P2 (right panel). Note the higher amplitude anomaly (M1) over the 

inferred Proterozoic basement high and the lower amplitude anomaly M3 over buried Jurassic 

intrusions. d) Bouguer anomalies. Note the higher values over the Proterozoic basement high 

and the lower values over the inferred post-rift sedimentary rocks within the Coastal Basins 

(left panel). A Bouguer anomaly low on the flank of the Southern Basin correlates with 

magnetic anomaly M3. e) Maximum horizontal gradient of pseudo–gravity. f) The tilt 

derivative (green) enhances magnetic anomalies M1 and M3. The TDX profiles locate 

magnetic lineaments L7, L3 and L4 and help guide the interpretation of the extent of the 

inferred sedimentary basin. g) Subglacial topography revealing the smooth bed over the 

inferred sedimentary basin (green) and rougher bed over the proposed Proterozoic basement 

high and Jurassic intrusions (X and + symbols respectively).   

Figure 14.  Compilation of geophysical data over the Weddell Sea Rift region. a) Bouguer 

anomaly map revealing the rifted continental crust of the Weddell Sea Rift (green to light 

blue colours) and the thicker crust of the EWM (purple colours). The black rectangle in 

panels a, b and c marks our aerogeophysical survey area. Note that the broad Bouguer 

anomaly high we identified over the Coastal Basins (CB) region is interpreted as revealing 

the inland extent of the Weddell Sea Rift. The dashed white line denotes the inferred 

continuation of the Weddell Rift Anomaly (WRA) (Aleshkova et al., 2000). The Bouguer 

high over the West Antarctic Rift System (WARS) abuts against the EWM. b) Bouguer 

anomaly map derived from satellite gravity data (Pail et al., 2010) showing the extent of thick 

crust of the EWM and East Antarctica. The sharp ~E-W oriented boundary between the 

thicker crust of East Antarctica and the thinner rifted crust within the Weddell Sea Rift (black 
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and white line) is approximately parallel to the newly identified Pagano Shear Zone. A 

similar sharp transition in crustal thickness was identified from a single oversnow gravity 

traverse- small and large crosses denote thinner and thicker crust respectively from Behrendt 

et al., (1974)-. c) Merged aeromagnetic anomaly map including our new survey data, 

ADMAP (Golynsky et al., 2001) and data over the Dufek Intrusion (Ferris et al., 2003). Note 

the inferred N-S trending fault (L7) flanking the interpreted Proterozoic horst block in the 

Coastal Basins region (M1) that lies on strike with rift fabric in the Weddell Sea Rift and the 

E-W trending Pagano Shear Zone (PSZ) (red line).  EA Explora Anomaly, BI, Berkner 

Island, DI Dufek Intrusion.  d) Interpretation map overlain on subglacial topography (grey) 

from BEDMAP and our new survey.  Coloured zones mark magnetic domains within the 

Weddell Sea Rift region adapted from Golynsky et al., (2000). These include the Proterozoic 

Haag Domain, the Ronne Domain (interpreted either as Jurassic intrusions and/or rifted 

basement blocks) and the East Antarctic Margin Domain (that includes Jurassic seaward 

dipping reflectors and exposed and inferred Jurassic intrusions). Note the newly proposed 

left-lateral Pagano Shear Zone (PSZ) and the previously inferred right-lateral strike slip fault 

at the edge of the Dufek intrusion (Support Force Lineament of Ferris et al., 1998). Red 

rectangle locates detailed views of these proposed strike slip fault systems (figures 15 and 

16).  

Figure 15. Detailed views of the proposed strike-slip fault systems at the southern end of the 

Weddell Sea Rift. a) Magnetic interpretation overlain on subglacial topography. Note 

magnetic lineaments L3-L5 flanking the Pagano Shear Zone (PSZ) and the abrupt termination 

of the Filchner Rift (FR) along the Support Force Lineament (SFL) shown in red. White lines 

denote previously proposed left-lateral strike-slip faults and normal faults between Berkner 

Island (BI) and the Dufek (DI) and Forrestal intrusions (FI) adapted from Ferris et al., (1998). 
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Note that the Thiel Trough (TT) and the inferred normal faults therein lie on strike with the 

newly identified Pagano Shear Zone. Yellow and green and purple outlines as in Figure 14.  

b) Same as above but overlain on Aeromagnetic anomaly map.  

Figure 16. Alternative kinematic interpretations for the southern end of the Weddell Sea Rift. 

a) Simple shear model predicting that ~E-W oriented extension within the Weddell Sea Rift 

is accomodated by left-lateral strike-slip motion on the Pagano Shear Zone. The model 

predicts westward motion of the EWM (large white arrow) with respect to East Antarctica. 

FR: Filchner Rift; TT: Thiel Trough. b) Pure shear model with the Pagano Shear Zone (PSZ) 

and Support Force Lineament (SFL) representing conjugate dextral and sinistral fault 

systems. The model predicts NW-SE oriented extension in the Weddell Sea Rift and NE-SW 

oriented compression in the hinge zone between the strike-slip fault systems.  



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

63 

 

Table 1. Susceptibility measurements for the Ellsworth Whitmore Mountains crustal block 

from data held at the Polar Rock Repository at Byrd Polar Research Center, Ohio State 

University. 

 Rock type Age Average 

x10
-3

 SI 

Min 

x10
-3

 SI 

Max 

x10
-3

 SI 

Number 

of records 

Haag 

Nunataks 

Fine grained 

granite and aplite. 

Proterozoic 10.42 2.99 15.38 4 

Ellsworth 

Mountains 

Igneous rocks. Cambrian 1.67 0.19 11.9 16 

Pirrit Hills Granite Jurassic 1.51 0.002 4.9 46 

Pagano 

Nunatak 

Granite Jurassic 0.26 0.05 1.07 12 

Nash Hills Granite Jurassic 0.89 0.05 2.97 9 

 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

64 

 

Table 2. Body properties used in object orientated models. Bodies I1-I4 refer to the inland 

profile (Fig. 10), and bodies C1 and C2 refer to the coastal profile (Fig. 11). 

Body Modelled magnetic 

anomaly 

Magnetic susceptibility 

x10
-3

 SI 

Rock Density kgm
-3

 

UC (Upper crust)  0 2670 

LC (lower crust)  0 2950 

Mantle  0 3330 

S (Sediment)  0 2500 

Underplate  0 3100 

I1  Nash Hills 7.6 2550 

I2  M5 6.3 2550 

I3  M4 10 2550 

I4  Pagano Nunatak 19.5 2550  

I5 Pagano Nunatak/M4 0 2550 

C1  M1 17.5  2700 

C2  M3 6 2550 
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