55 research outputs found
Embracing additive manufacture: implications for foot and ankle orthosis design
<p>Abstract</p> <p>Background</p> <p>The design of foot and ankle orthoses is currently limited by the methods used to fabricate the devices, particularly in terms of geometric freedom and potential to include innovative new features. Additive manufacturing (AM) technologies, where objects are constructed via a series of sub-millimetre layers of a substrate material, may present the opportunity to overcome these limitations and allow novel devices to be produced that are highly personalised for the individual, both in terms of fit and functionality.</p> <p>Two novel devices, a foot orthosis (FO) designed to include adjustable elements to relieve pressure at the metatarsal heads, and an ankle foot orthosis (AFO) designed to have adjustable stiffness levels in the sagittal plane, were developed and fabricated using AM. The devices were then tested on a healthy participant to determine if the intended biomechanical modes of action were achieved.</p> <p>Results</p> <p>The adjustable, pressure relieving FO was found to be able to significantly reduce pressure under the targeted metatarsal heads. The AFO was shown to have distinct effects on ankle kinematics which could be varied by adjusting the stiffness level of the device.</p> <p>Conclusions</p> <p>The results presented here demonstrate the potential design freedom made available by AM, and suggest that it may allow novel personalised orthotic devices to be produced which are beyond the current state of the art.</p
The use of 3D surface scanning for the measurement and assessment of the human foot
<p>Abstract</p> <p>Background</p> <p>A number of surface scanning systems with the ability to quickly and easily obtain 3D digital representations of the foot are now commercially available. This review aims to present a summary of the reported use of these technologies in footwear development, the design of customised orthotics, and investigations for other ergonomic purposes related to the foot.</p> <p>Methods</p> <p>The PubMed and ScienceDirect databases were searched. Reference lists and experts in the field were also consulted to identify additional articles. Studies in English which had 3D surface scanning of the foot as an integral element of their protocol were included in the review.</p> <p>Results</p> <p>Thirty-eight articles meeting the search criteria were included. Advantages and disadvantages of using 3D surface scanning systems are highlighted. A meta-analysis of studies using scanners to investigate the changes in foot dimensions during varying levels of weight bearing was carried out.</p> <p>Conclusions</p> <p>Modern 3D surface scanning systems can obtain accurate and repeatable digital representations of the foot shape and have been successfully used in medical, ergonomic and footwear development applications. The increasing affordability of these systems presents opportunities for researchers investigating the foot and for manufacturers of foot related apparel and devices, particularly those interested in producing items that are customised to the individual. Suggestions are made for future areas of research and for the standardization of the protocols used to produce foot scans.</p
Insulin-like growth factor I: Could it be a marker of prematurity in the foal?
Insulin-like growth factor (IGF)-I represents one of the most important growth regulators, playing a central role in fetal and neonatal growth. Plasma IGF-I levels increase rapidly
after birth, and they are influenced by numerous factors, including sex, age, nutritional state, and premature birth. The aims of this study were: (1) to evaluate the IGF-I plasma
profile in healthy newborn foals during the first 2 weeks of life; (2) to assess the possible influence of sex and birth weight on this hormone; (3) to analyze the percentage increment of IGF-I values in healthy foals; (4) to evaluate the influence of prematurity on IGF-I profile; (5) to verify the role of IGF-I as a diagnostic marker of prematurity; and (6) to
analyze the percentage increment of IGF-I in premature foals. Thirty-four healthy term foals were enrolled as the control group and from each foal plasma was collected within 6
hours from birth, at 12 hours, daily from Day 1 to Day 7, and at Days 10 and 14 after birth.
Eleven foals aged younger than 1 week and diagnosed as premature and hospitalized at a Equine Perinatology Unit were also enrolled; from each foal plasma was collected daily
from the day of admission to discharge or death. Insulin-like growth factor I was analyzed by RIA. In the control group, an increasing trend of IGF-I concentrations was found, with
higher values from Day 4 to 10 compared with data obtained at less than 6 hours of life, and from Day 5 to 10 compared with 12 and 24 hours and 3 days. No differences were
found in healthy foals analyzed in relation to birth weight and sex. In premature foals an increasing trend was observed but no statistical differences were found among sampling
times, and no differences were found between healthy and premature foals. The IGF value in premature foals at admission was always higher compared with the lowest recorded level in healthy age-matched foals, thus this parameter does not seem to have a diagnostic
role for prematurity in foals. Finally, the evaluation of the percentage increment of IGF-I concentrations showed a significant increase in full-term foals on Day 5, 6, 7, and 10
compared with 12 and 24 hours, and no differences were observed in premature foals. In conclusion, prematurity in newborn foals seems to affect only partially IGF-I plasma
concentrations and it does not seem to be a reliable marker for this pathological condition
Correlations among body temperature, plasma progesterone, cortisol and prostaglandin F2 alpha of the periparturient bitch
The results of this study suggest that, besides the irrelevant role of body temperature measurement to predict the impending parturition in the bitch, progesterone and 15-ketodihydroprostaglandin F2alpha plasma level records could be more suitable to detect the approaching whelping in this species. More interesting was the statistically significant substantial increase in body temperature beginning 12 h after the onset of parturition. Therefore, if any significant increase in body temperature is recorded at the end of pregnancy without the beginning of the expulsion of fetuses, it could indicate problems at parturition. In this study, cortisol levels increased significantly at the time of delivery and remained high 12 h after the beginning of parturition, decreasing within 36 h after the onset of whelping. 15-ketodihydro-prostaglandin F2alpha levels increased significantly 24 h before parturition and again at the onset of whelping. Progesterone levels decreased significantly, starting 24 h before the onset of whelping and remained low after delivery
Insulin-like growth factor I: Could it be a marker of prematurity in the foal?
Insulin-like growth factor (IGF)-I represents one of the most important growth regulators, playing a central role in fetal and neonatal growth. Plasma IGF-I levels increase rapidly after birth, and they are influenced by numerous factors, including sex, age, nutritional state, and premature birth. The aims of this study were: (1) to evaluate the IGF-I plasma profile in healthy newborn foals during the first 2 weeks of life; (2) to assess the possible influence of sex and birth weight on this hormone; (3) to analyze the percentage increment of IGF-I values in healthy foals; (4) to evaluate the influence of prematurity on IGF-I profile; (5) to verify the role of IGF-I as a diagnostic marker of prematurity; and (6) to analyze the percentage increment of IGF-I in premature foals. Thirty-four healthy term foals were enrolled as the control group and from each foal plasma was collected within 6 hours from birth, at 12 hours, daily from Day 1 to Day 7, and at Days 10 and 14 after birth. Eleven foals aged younger than 1 week and diagnosed as premature and hospitalized at a Equine Perinatology Unit were also enrolled; from each foal plasma was collected daily from the day of admission to discharge or death. Insulin-like growth factor I was analyzed by RIA. In the control group, an increasing trend of IGF-I concentrations was found, with higher values from Day 4 to 10 compared with data obtained at less than 6 hours of life, and from Day 5 to 10 compared with 12 and 24 hours and 3 days. No differences were found in healthy foals analyzed in relation to birth weight and sex. In premature foals an increasing trend was observed but no statistical differences were found among sampling times, and no differences were found between healthy and premature foals. The IGF value in premature foals at admission was always higher compared with the lowest recorded level in healthy age-matched foals, thus this parameter does not seem to have a diagnostic role for prematurity in foals. Finally, the evaluation of the percentage increment of IGF-I concentrations showed a significant increase in full-term foals on Day 5, 6, 7, and 10 compared with 12 and 24 hours, and no differences were observed in premature foals. In conclusion, prematurity in newborn foals seems to affect only partially IGF-I plasma concentrations and it does not seem to be a reliable marker for this pathological condition
- …