22 research outputs found
Nestin-Cre Mice Are Affected by Hypopituitarism, Which Is Not Due to Significant Activity of the Transgene in the Pituitary Gland
Nestin-Cre mice express Cre recombinase under control of the rat nestin promoter and central nervous system (CNS) enhancer. While endogenous Nestin is expressed in some other tissues including the pituitary gland, Nestin-Cre mice induce recombination predominantly in the CNS. For this reason, they have been widely used to explore gene function or cell fate in the latter. Pituitary hormonal deficiencies, or hypopituitarism, are associated with a wide range of symptoms and with a significant morbidity. These can have a neural and/or a pituitary origin as the gland's secretions are controlled by the hypothalamus. We report here that Nestin-Cre mice themselves are affected by mild hypopituitarism. Hence, physiological consequences are expected, especially in combination with defects resulting from Cre mediated deletion of any gene under investigation. To further investigate the origin of this phenotype, we re-examined the activity of the transgene. We compared it with expression of Nestin itself in the context of the hypothalamo-pituitary axis, especially in the light of a recent report showing pituitary Nestin-Cre activity, which contrasts with previous data. Our results disagree with those of this recent study and do not support the claim that Nestin positive cells are present in the pituitary anlagen, the Rathke's pouch (RP). Moreover we did not observe any significant activity in the post-natal pituitary, in agreement with the initial report
Generation of Immortal Cell Lines from the Adult Pituitary: Role of cAMP on Differentiation of SOX2-Expressing Progenitor Cells to Mature Gonadotropes
The pituitary is a complex endocrine tissue composed of a number of unique cell types distinguished by the expression and secretion of specific hormones, which in turn control critical components of overall physiology. The basic function of these cells is understood; however, the molecular events involved in their hormonal regulation are not yet fully defined. While previously established cell lines have provided much insight into these regulatory mechanisms, the availability of representative cell lines from each cell lineage is limited, and currently none are derived from adult pituitary. We have therefore used retroviral transfer of SV40 T-antigen to mass immortalize primary pituitary cell culture from an adult mouse. We have generated 19 mixed cell cultures that contain cells from pituitary cell lineages, as determined by RT-PCR analysis and immunocytochemistry for specific hormones. Some lines expressed markers associated with multipotent adult progenitor cells or transit-amplifying cells, including SOX2, nestin, S100, and SOX9. The progenitor lines were exposed to an adenylate cyclase activator, forskolin, over 7 days and were induced to differentiate to a more mature gonadotrope cell, expressing significant levels of α-subunit, LHβ, and FSHβ mRNAs. Additionally, clonal populations of differentiated gonadotropes were exposed to 30 nM gonadotropin-releasing hormone and responded appropriately with a significant increase in α-subunit and LHβ transcription. Further, exposure of the lines to a pulse paradigm of GnRH, in combination with 17β-estradiol and dexamethasone, significantly increased GnRH receptor mRNA levels. This array of adult-derived pituitary cell models will be valuable for both studies of progenitor cell characteristics and modulation, and the molecular analysis of individual pituitary cell lineages
A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary
BACKGROUND: The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. PRINCIPAL FINDINGS: We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. SIGNIFICANCE: Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease
Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma
Activating mutations in the gene encoding β-catenin have been identified in the paediatric form of human craniopharyngioma (adamantinomatous craniopharyngioma, ACP), a histologically benign but aggressive pituitary tumour accounting for up to 10% of paediatric intracranial tumours. Recently, we generated an ACP mouse model and revealed that, as in human ACP, nucleocytoplasmic accumulation of β-catenin (β-catnc) and over-activation of the Wnt/β-catenin pathway occurs only in a very small proportion of cells, which form clusters. Here, combining mouse genetics, fluorescence labelling and flow-sorting techniques, we have isolated these cells from tumorigenic mouse pituitaries and shown that the β-catnc cells are enriched for colony-forming cells when cultured in stem cell-promoting media, and have longer telomeres, indicating shared properties with normal pituitary progenitors/stem cells (PSCs). Global gene profiling analysis has revealed that these β-catnc cells express high levels of secreted mitogenic signals, such as members of the SHH, BMP and FGF family, in addition to several chemokines and their receptors, suggesting an important autocrine/paracrine role of these cells in the pathogenesis of ACP and a reciprocal communication with their environment. Finally, we highlight the clinical relevance of these findings by showing that these pathways are also up-regulated in the β-catnc cell clusters identified in human ACP. As well as providing further support to the concept that pituitary stem cells may play an important role in the oncogenesis of human ACP, our data reveal novel disease biomarkers and potential pharmacological targets for the treatment of these devastating childhood tumours.Electronic supplementary materialThe online version of this article (doi:10.1007/s00401-012-0957-9) contains supplementary material, which is available to authorized users
Anatomical and functional gonadotrope networks in the teleost pituitary
Mammalian pituitaries exhibit a high degree of intercellular coordination; this enables them to mount large-scale coordinated responses to various physiological stimuli. This type of communication has not been adequately demonstrated in teleost pituitaries, which exhibit direct hypothalamic innervation and expression of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) in distinct cell types. We found that in two fish species, namely tilapia and zebrafish, LH cells exhibit close cell–cell contacts and form a continuous network throughout the gland. FSH cells were more loosely distributed but maintained some degree of cell–cell contact by virtue of cytoplasmic processes. These anatomical differences also manifest themselves at the functional level as evidenced by the effect of gap-junction uncouplers on gonadotropin release. These substances abolished the LH response to gonadotropin-releasing hormone stimulation but did not affect the FSH response to the same stimuli. Dye transfer between neighboring LH cells provides further evidence for functional coupling. The two gonadotropins were also found to be differently packaged within their corresponding cell types. Our findings highlight the evolutionary origin of pituitary cell networks and demonstrate how the different levels of cell–cell coordination within the LH and FSH cell populations are reflected in their distinct secretion patterns