3,188 research outputs found

    The Influence of Redox Conditions on the Seismic Properties of Polycrystalline Olivine

    Get PDF
    Eight olivine specimens were fabricated by use of a solgel method and hot-pressing at 1200 degrees Centigrade and 300 megapascals (MPa) inside of welded Pt capsules. Each hot-pressed specimen was then recovered, precision ground, and wrapped in Pt, Ni or NiFe foil to vary oxygen fugacity (fO2) during the subsequent forced torsional oscillation measurements. Mechanical testing was conducted at 10 oscillation periods between 1 and 1000 seconds, at a confining pressure of 200 MPa, during a slow staged-cooling from a maximum temperature of 1200 degrees Centigrade down to room temperature. After mechanical testing, each specimen was axially sectioned and EBSD (Electron BackScatter Diffraction) was used for the determination of the representative grain size, and grain size distribution of each sample. In addition, each longitudinal section was mapped via FTIR (Fourier Transform Infrared Spectroscopy) to determine the spatial distribution and concentrations of chemically bound and molecular water. Amongst these eight specimens, chemically bound water contents were observed to vary between 0 and 1150 atom parts per million (ppm) H/Si, and molecular water concentrations varied between 0 and 245 atom ppm H/Si. Our forced-oscillation results demonstrate that the measured magnitude of anelastic relaxation within the experimental window of oscillation periods is unrelated to the water content. Rather, a relationship was observed between the magnitude of anelastic relaxation and the prevailing redox conditions, which is influenced by the choice of metal sleeving used during the mechanical test. Further, regardless of water content or metal sleeving, each specimen exhibits coupled variations in shear modulus and dissipation within the observational window, indicative of high-temperature background behavior, that can be described by a Burgers-type model. During initial fitting of the Burgers models, the unrelaxed shear modulus at a reference temperature of 900C (elastic unloading/reloading shear modulus G (sub UR)) and the temperature derivative of the unrelaxed shear modulus (dGU/dT), were treated as adjustable parameters. For all Fe-bearing olivine samples we observe deficits of G (sub UR) and increased values of dGU/dT, relative to the expected elastic (anharmonic) behavior for Fo (Forsterite content percentage) (sub 90) olivine. This behavior is indicative of anelastic relaxation occurring at shorter periods than observable within the window of oscillation periods used in the mechanical test. Moving towards a comprehensive and seismologically applicable Burgers model, which includes this newly observed effect of redox conditions on anelastic relaxation, we will present our progress on reconciling truly anharmonic and elastic behavior of Fo (sub 90) olivine with our observed forced-oscillation data

    The Effect of Redox Conditions on Seismic Waves in Iron-Bearing Olivine: Implications for Understanding Planetary Interiros Through Seismilogy

    Get PDF
    Seismic data, inclusive of velocities and attenuation, can be utilized to elucidate the physical state of planetary interiors]. However, numerous micromechanical factors have been either experimentally demonstrated, or theoretically considered, to affect the propagation and dissipation of seismic energy within crystalline solids - including, but not limited to, changes in grain size, temperature, melt fraction, pressure and dislocation density. Thus, observed variations in seismic wave speeds and attenuation may be used to ultimately map variations in physical properties, such as those listed above, within planetary bodies. But, in order to complete a successful inversion of seismic data into representations of physical properties, a first requirement is to obtain a fundamental laboratory based understanding of how each of these possible factors individually influences seismic waves. Here we conduct an experimental study with the initial objective to further understand one of the most commonly invoked, yet least studied, mechanisms that could alter intrinsic seismic wave attenuation: water content (occurring as chemically-bound hydroxyl). The historical basis for determining the effect of water on seismic properties was established predominantly through analogy with large-strain creep experiments conducted on olivine under water-saturated conditions. While these deformation experiments routinely demonstrate a weakening of olivine in the presence of water, they represent a fundamentally different deformation regime in comparison to the microstrains experienced due to a passing seismic wave. Thus, in order to directly assess the effects of water on seismic properties, small-strain experiments are required. Substantially modified seismic properties in the presence of water have been observed previously at low strains and low frequencies, but only in a single exploratory study conducted under water-saturated conditions. Thus, to properly test the theoretical predictions we conducted a systematic study of the seismic properties of olivine using low-frequency torsional oscillation on aggregates containing varying concentrations of bound hydroxyl, for the first time at under saturated conditions

    Markerless attenuation correction for carotid MRI surface receiver coils in combined PET/MR imaging.

    Get PDF
    The purpose of the study was to evaluate the effect of attenuation of MR coils on quantitative carotid PET/MR exams. Additionally, an automated attenuation correction method for flexible carotid MR coils was developed and evaluated.The attenuation of the carotid coil was measured by imaging a uniform water phantom injected with 37 MBq of 18F-FDG in a combined PET/MR scanner for 24 min with and without the coil. In the same session, an ultra-short echo time (UTE) image of the coil on top of the phantom was acquired. Using a combination of rigid and non-rigid registration, a CT-based attenuation map was registered to the UTE image of the coil for attenuation and scatter correction. After phantom validation, the effect of the carotid coil attenuation and the attenuation correction method were evaluated in five subjects.Phantom studies indicated that the overall loss of PET counts due to the coil was 6.3% with local region-of-interest (ROI) errors reaching up to 18.8%. Our registration method to correct for attenuation from the coil decreased the global error and local error (ROI) to 0.8% and 3.8%, respectively. The proposed registration method accurately captured the location and shape of the coil with a maximum spatial error of 2.6 mm. Quantitative analysis in human studies correlated with the phantom findings, but was dependent on the size of the ROI used in the analysis.MR coils result in significant error in PET quantification and thus attenuation correction is needed. The proposed strategy provides an operator-free method for attenuation and scatter correction for a flexible MRI carotid surface coil for routine clinical use

    Electric field-driven dielectrophoretic elastomer actuators

    Get PDF
    Dielectrophoresis is the electro-mechanical phenomenon where a force is generated on a dielectric material when exposed to a non-uniform electric field. It has potential to be exploited in smart materials for robotic manipulation and locomotion, but to date it has been sparsely studied in this area. Herein, a new type of dielectrophoretic actuator exploiting a novel electroactive polymer is described, termed as dielectrophoretic elastomer (DPE), which undergoes electric field-driven actuation through dielectrophoresis. Unique deflection and morphing behavior of the elastomer induced by controlling the dielectrophoretic phenomenon, such as out-of-plane deformation and independence of electric field polarity, are illustrated. The dielectric and mechanical properties of the DPE are studied to gain insight into the influence of materials composition on deformation. Actuation performance using different electrode parameters is experimentally investigated with supplementary analysis through finite element simulation, revealing the relationship between electric field inhomogeneity and deflection. The applications of DPE actuators in a range of robotic devices is demonstrated, including a pump, an adjustable optical lens, and a walking robot. This diverse range of applications illustrates the wide potential of these new soft-and-smart electric field-driven materials for use in soft robotics and soft compliant devices

    Acceptability of temporary suspension of visiting during norovirus outbreaks:investigating patient, visitor and public opinion

    Get PDF
    Background Noroviruses are a leading cause of outbreaks globally and the most common cause of service disruption due to ward closures. Temporary suspension of visiting (TSV) is increasingly a recommended public health measure to reduce exposure, transmission and impact during norovirus outbreaks; however, preventing patient–visitor contact may contravene the ethos of person-centred care, and public acceptability of this measure is not known. Aim To investigate the acceptability of TSV during norovirus outbreaks from the perspectives of patients, visitors and the wider public. Methods Cross-sectional survey of patients (N = 153), visitors (N = 175) and the public (N = 224) in three diverse areas in Scotland. Health Belief Model constructs were applied to understand ratings of acceptability of TSV during norovirus outbreaks, and to determine associations between these levels and various predictor variables. Findings The majority (84.6%) of respondents indicated that the possible benefits of TSV are greater than the possible disadvantages. Conversely, the majority (70%) of respondents disagreed that TSV ‘is wrong as it ignores people's rights to have contact with family and friends’. The majority (81.6%) of respondents agreed that TSV would be more acceptable if exceptions were made for seriously ill or dying patients. Correlational analysis demonstrated that overall acceptability was positively related to perceived severity (r = 0.65), identified benefits (r = 0.54) and implementing additional communication strategies (r = 0.60); acceptability was negatively related to potential barriers (r = −0.49). Conclusions There is greater service user and public support for the use of TSV than concerns around impinging upon patients' rights to have visitors. TSV should be considered as an acceptable infection control measure that could be implemented consistently during norovirus outbreaks

    Photodisintegration of the triton with realistic potentials

    Get PDF
    The process γ+t→n+d\gamma + t \to n + d is treated by means of three-body integral equations employing in their kernel the W-Matrix representation of the subsystem amplitudes. As compared to the plane wave (Born) approximation the full solution of the integral equations, which takes into account the final state interaction, shows at low energies a 24% enhancement. The calculations are based on the semirealistic Malfliet-Tjon and the realistic Paris and Bonn B potentials. For comparison with earlier calculations we also present results for the Yamaguchi potential. In the low-energy region a remarkable potential dependence is observed, which vanishes at higher energies.Comment: 16 pages REVTeX, 8 postscript figures included, uses epsfig.st

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation
    • 

    corecore