50 research outputs found

    Full range of wettability through surface modification of single-wall carbon nanotubes by photo-initiated chemical vapour deposition

    Get PDF
    Single-wall carbon nanotubes (SWCNTs) have various remarkable properties, which make them a promising candidate for many applications. However, their inherent hydrophobicity has limited their commercial use in optical, biological, and electrical applications. Photo-initiated chemical vapour deposition (PICVD) using syngas is proposed as a novel, affordable, and versatile method to tailor SWCNT wettability through the addition of oxygen-containing functional groups. Following PICVD surface treatment, X-ray photoelectron spectroscopy, water contact angle measurements (CA), thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy confirm controlled oxygenation of the SWCNT surface. Indeed, this novel approach allows to reproducibly make SWCNTs having surfaces properties ranging from superhydrophilic (CA 150°), including any intermediate values, by simply varying operational parameters such as molar ratio of the syngas precursor, photo-polymerization time and reactor pressure (about normal conditions)

    Peptides derived from the knuckle epitope of BMP-9 induce the cholinergic differentiation and inactivate GSk3beta in human SH-SY5Y neuroblastoma cells

    Get PDF
    The incidence of brain degenerative disorders like Alzheimer's disease (AD) will increase as the world population ages. While there is presently no known cure for AD and current treatments having only a transient effect, an increasing number of publications indicate that growth factors (GF) may be used to treat AD. GFs like the bone morphogenetic proteins (BMPs), especially BMP-9, affect many aspects of AD. However, BMP-9 is a big protein that cannot readily cross the blood-brain barrier. We have therefore studied the effects of two small peptides derived from BMP-9 (pBMP-9 and SpBMP-9). We investigated their capacity to differentiate SH-SY5Y human neuroblastoma cells into neurons with or without retinoic acid (RA). Both peptides induced Smad 1/5 phosphorylation and their nuclear translocation. They increased the number and length of neurites and the expression of neuronal markers MAP-2, NeuN and NSE better than did BMP-9. They also promoted differentiation to the cholinergic phenotype more actively than BMP-9, SpBMP-9 being the most effective as shown by increases in intracellular acetylcholine, ChAT and VAchT. Finally, both peptides activated the PI3K/Akt pathway and inhibited GSK3beta, a current AD therapeutic target. BMP-9-derived peptides, especially SpBMP-9, with or without RA, are promising molecules that warrant further investigation

    Reaction kinetics and temperature effects in syngas photo-initiated chemical vapor deposition on single-walled carbon nanotubes

    Get PDF
    Photo-initiated chemical vapor deposition (PICVD) is a solvent-free process that can be used to produce thin films on a variety of substrates, with applications in fields ranging from biomedicine to optics and microelectronics. This study presents a kinetic analysis for this process using syngas (CO + H2) as a precursor for the surface treatment of single-walled carbon nanotubes (SWCNT) with average dimensions of 1.5 × 100 nm (diameter × length), and addresses the role of iron pentacarbonyl (Fe(CO)5), a photo-active contaminant found in CO. This work builds upon previously developed reaction schemes for PICVD, based mainly on surface characterizations, by coupling these analyses with gas-phase monitoring. This allows us to propose two separate reaction schemes for the gas and surface phase reactions and consider temperature effects. Online FTIR, offline GC-MS, and online GC characterized the gas phase, while for surface characterizations, XPS and TGA were used. Characterizations showed that a coating with a general formula of CnO3nFen was deposited, corresponding to 0.29 ± 0.04 mg carbon and 0.49 ± 0.03 mg iron on the SWCNT substrate over the course of treatment. The Fe(CO)5 was identified as the key reactant in syngas/PICVD reactions and was nearly completely consumed (94%). Mass balances derived from the gas phase characterization showed that Fe(CO)5 inputted to the plug flow reactor could potentially contribute all the amount of 0.49 ± 0.03 mg of Fe and 0.29 ± 0.04 mg of C to the coating on the SWCNT, indicating that syngas/PICVD can be optimized in the future to decrease gas throughput. Temperature did not show a significant effect in the case of PICVD. However, in the absence of ultraviolet light, its role becomes determinant, with rising temperatures causing more Fe deposition

    Rapid antibacterial activity of anodized aluminum-based materials impregnated with quaternary ammonium compounds for high-touch surfaces to limit transmission of pathogenic bacteria

    Get PDF
    Infections caused by multidrug-resistant bacteria are a major public health problem. Their transmission is strongly linked to cross contamination via inert surfaces, which can serve as reservoirs for pathogenic microorganisms. To address this problem, antibacterial materials applied to high-touch surfaces have been developed. However, reaching a rapid and lasting effectiveness under real life conditions of use remains challenging. In the present paper, hard-anodized aluminum (AA) materials impregnated with antibacterial agents (quaternary ammonium compounds (QACs) and/or nitrate silver (AgNO3)) were prepared and characterized. The thickness of the anodized layer was about 50 μm with pore diameter of 70 nm. AA with QACs and/or AgNO3 had a water contact angle varying between 45 and 70°. The antibacterial activity of the materials was determined under different experimental settings to better mimic their use, and included liquid, humid, and dry conditions. AA–QAC surfaces demonstrated excellent efficiency, killing >99.9% of bacteria in 5 min on a wide range of Gram-positive (Staphylococcus aureus, Clostridioides difficile, vancomycin-resistant Enterococcus faecium) and Gram-negative (streptomycin-resistant Salmonella typhimurium and encapsulated Klebsiella pneumoniae) pathogens. AA–QACs showed a faster antibacterial activity (from 0.25 to 5 min) compared with antibacterial copper used as a reference (from 15 min to more than 1 h). We show that to maintain their high performance, AA–QACs should be used in low humidity environments and should be cleaned with solutions composed of QACs. Altogether, AA–QAC materials constitute promising candidates to prevent the transmission of pathogenic bacteria on high-touch surfaces

    Impact of simulated brain interstitial fluid flow on the chemokine CXCL12 release from an alginate-based hydrogel in a new 3D in vitro model

    Get PDF
    ABSTRACT: Introduction: Extensive investigation has been undertaken regarding drug delivery systems for the management of glioblastoma multiforme (GBM). The infiltrative behavior of GBM cells within the brain tissue is primarily attributed to their heterogeneity, the movement of interstitial fluid (IFF), and the presence of chemokines. These factors contribute to the limited effectiveness of current conventional treatments. To address the dissemination of GBM cells, a proposed therapeutic approach involves utilizing a controlled release gradient of CXC-chemokine-ligand-12 (CXCL12). However, the impact of IFF on GBM cell migration within the brain underscores its critical importance as a significant parameter, which, surprisingly, has not been extensively studied in the context of localized drug delivery targeting the brain. Methods: Hydrogels are known for their inherent capacity to entrap various agents and exert precise control over their subsequent release. In the present investigation, we aimed to elucidate the release kinetics of CXCL12, whether in its free form or encapsulated within nanoparticles, from alginate-based hydrogels, both under static and dynamic conditions. To investigate the impact of convective forces mimicking the interstitial fluid flow (IFF) within the peritumoral environment of the brain, a three-dimensional in vitro model was developed. This model enabled the evaluation of CXCL12 release as a function of time and position, specifically accounting for the contribution of simulated IFF on the release behavior. Results: We first demonstrated that the release kinetic profiles under static culture conditions were independent of the initial mass loading and the predominant phenomenon occurring was diffusion. Subsequently, we investigated the release of CXCL12, which was loaded into Alginate/Chitosan-Nanoparticles (Alg/Chit-NPs) and embedded within an alginate hydrogel matrix. Mathematical modeling results also indicated the presence of electrostatic interactions between alginate and CXCL12. The Alg/Chit-NPs effectively slowed down the initial burst release, leading to a reduction in the diffusion coefficient of CXCL12. To further study the release behavior, we developed a perfusion bioreactor with a unique culture chamber designed to recapitulate the peritumoral environment and varied the fluid flow rates at 0.5 µL/min, 3 µL/min, 6.5 µL/min, and 10 µL/min. As the flow rate increased, the cumulative amount of released CXCL12 also increased for all three initial mass loadings. Beyond 3 µL/min, convection became the dominant mechanism governing CXCL12 release, whereas below this threshold, diffusion played a more prominent role. Conclusion: The indirect perfusion flow had a crucial impact on CXCL12 release and distribution inside the hydrogel in and against its direction. This system highlights the importance of considering the IFF in brain targeting delivery system and will be used in the future to study GBM cell behaviors in response to CXCL12 gradient

    Natalizumab treatment shows low cumulative probabilities of confirmed disability worsening to EDSS milestones in the long-term setting.

    Get PDF
    Abstract Background Though the Expanded Disability Status Scale (EDSS) is commonly used to assess disability level in relapsing-remitting multiple sclerosis (RRMS), the criteria defining disability progression are used for patients with a wide range of baseline levels of disability in relatively short-term trials. As a result, not all EDSS changes carry the same weight in terms of future disability, and treatment benefits such as decreased risk of reaching particular disability milestones may not be reliably captured. The objectives of this analysis are to assess the probability of confirmed disability worsening to specific EDSS milestones (i.e., EDSS scores ≥3.0, ≥4.0, or ≥6.0) at 288 weeks in the Tysabri Observational Program (TOP) and to examine the impact of relapses occurring during natalizumab therapy in TOP patients who had received natalizumab for ≥24 months. Methods TOP is an ongoing, open-label, observational, prospective study of patients with RRMS in clinical practice. Enrolled patients were naive to natalizumab at treatment initiation or had received ≤3 doses at the time of enrollment. Intravenous natalizumab (300 mg) infusions were given every 4 weeks, and the EDSS was assessed at baseline and every 24 weeks during treatment. Results Of the 4161 patients enrolled in TOP with follow-up of at least 24 months, 3253 patients with available baseline EDSS scores had continued natalizumab treatment and 908 had discontinued (5.4% due to a reported lack of efficacy and 16.4% for other reasons) at the 24-month time point. Those who discontinued due to lack of efficacy had higher baseline EDSS scores (median 4.5 vs. 3.5), higher on-treatment relapse rates (0.82 vs. 0.23), and higher cumulative probabilities of EDSS worsening (16% vs. 9%) at 24 months than those completing therapy. Among 24-month completers, after approximately 5.5 years of natalizumab treatment, the cumulative probabilities of confirmed EDSS worsening by 1.0 and 2.0 points were 18.5% and 7.9%, respectively (24-week confirmation), and 13.5% and 5.3%, respectively (48-week confirmation). The risks of 24- and 48-week confirmed EDSS worsening were significantly higher in patients with on-treatment relapses than in those without relapses. An analysis of time to specific EDSS milestones showed that the probabilities of 48-week confirmed transition from EDSS scores of 0.0–2.0 to ≥3.0, 2.0–3.0 to ≥4.0, and 4.0–5.0 to ≥6.0 at week 288 in TOP were 11.1%, 11.8%, and 9.5%, respectively, with lower probabilities observed among patients without on-treatment relapses (8.1%, 8.4%, and 5.7%, respectively). Conclusions In TOP patients with a median (range) baseline EDSS score of 3.5 (0.0–9.5) who completed 24 months of natalizumab treatment, the rate of 48-week confirmed disability worsening events was below 15%; after approximately 5.5 years of natalizumab treatment, 86.5% and 94.7% of patients did not have EDSS score increases of ≥1.0 or ≥2.0 points, respectively. The presence of relapses was associated with higher rates of overall disability worsening. These results were confirmed by assessing transition to EDSS milestones. Lower rates of overall 48-week confirmed EDSS worsening and of transitioning from EDSS score 4.0–5.0 to ≥6.0 in the absence of relapses suggest that relapses remain a significant driver of disability worsening and that on-treatment relapses in natalizumab-treated patients are of prognostic importance

    Effect of BMP-9 on endothelial cells and its role in atherosclerosis

    No full text
    corecore