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ABSTRACT 
   

 Single-wall carbon nanotubes 

(SWCNTs) have various remarkable properties, 

which make them a promising candidate for 

many applications. However, their inherent 

hydrophobicity have limited their commercial 

use in optical, biological, and electrical 

applications. Photo-initiated chemical vapor 

deposition (PICVD) using syngas is proposed 

as a novel, affordable, and versatile method to 

tailor SWCNT wettability through the addition 

of oxygen-containing functional groups. 

Following PICVD surface treatment, X-ray 

photoelectron spectroscopy, water contact angle measurements (CA), thermogravimetric analysis, 

Raman spectroscopy and transmission electron microscopy confirm controlled oxygenation of the 

SWCNT surface. Indeed, this novel approach allows to reproducibly make SWCNT having surfaces 

properties ranging from superhydrophilic (CA<5°) to superhydrophobic (CA>150°), including any 

intermediate values, by simply varying operational parameters such as molar ratio of the syngas 

precursor, photo-polymerization time and reactor pressure (about normal conditions). 
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List of abbreviations and parameters S-T-SWCNT Syngas Treated Single-Wall Carbon Nanotubes 
  TACVD Thermal Activated Chemical Vapour Deposition 
  T-SWCNT Treated Single-Wall Carbon Nanotubes 
CA Contact Angle  TEM  Transmission Electron Microscopy  
DTGA Differential Thermogravimetric Analysis TGA Thermogravimetric Analysis  
EDS Energy Dispersive Spectroscopy  UV Ultra-Violet  
HR  High-Resolution  XPS  X-ray Photoelectron Spectroscopy  
HR-XPS  High Resolution X-ray Photoelectron 

Spectroscopy  
 sl Solid-Liquid Interfacial Energy 

Ozone/UV Treatment by Ozone Under UV Light  l
d Dispersive Component of Liquid Surface Tension 

O-T-SWCNT Ozone Treated Single-Wall Carbon Nanotubes  l
p Polar Component of Liquid Surface Tension 

PICVD Photo-Initiated Chemical Vapour Deposition  s Total Free Surface Tension of Solid 
PECVD Plasma Enhanced Chemical Vapour Deposition  s

d Dispersive Components of Solid Surface Tension 
PI Photo-Initiator  s

p Polar Components of Solid Surface Tension 
P-SWCNT Pure Single-Wall Carbon Nanotubes T Liquid Contact Angle 
SWCNT Single-Wall Carbon Nanotubes TA Advancing Contact Angle 
Syngas/PICVD Syngas Photo-Initiated Chemical Vapour 

Deposition 
TR Receding Contact Angle 

 

 

1. Introduction 
 

 Single wall carbon nanotubes (SWCNTs) have various properties of interest, such as high 

mechanical and electrical conductivity, remarkable thermal stability (up to 2800 qC under vacuum) 

[1, 2], proportionally lower weight than steel and titanium (typical materials in bone applications) [3, 

4] and the highest Young’s modulus among all different types of composites and nano-materials (> 

1-5 TPa) [1, 4]. These individual properties make them promising candidates for a wide range of 

applications such as aerospace, nanocomposites, biomedical and tissue engineering, to name only a 

few [5-7]. These materials have also shown potential to be used in bone applications due to their 

similarities with triple helix collagen fibrils, in terms of size and shape (diameter of SWCNTs ranges 

between 0.7-1.5 nm) [8-10]. Not only can these materials enhance the mechanical properties of 

biomaterials [11], they can also stimulate bone regeneration [12]. Therefore, they may be effective 

for use in different bone substitutes, such as scaffolds and fillers. 

Despite all the above-mentioned properties and potential of SWCNTs for different 

applications such as reinforcements in polymer nanocomposites and biomaterials synthesis, their 

inherent hydrophobicity and insolubility are the most challenging features that need to be addressed 

[2]. For example, in the case of nanocomposites, one of the most important factors that should be 

considered is the homogeneous dispersion of SWCNT nanofillers [7]. Untreated SWCNTs tend to 

aggregate due to their high surface area to volume ratio and strong van der Waals interactions while 

the resulting aggregation negatively overshadows mechanical, electrical and thermal properties 

gained by SWCNT addition [7, 13-15].  
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Various approaches exist to modify the CNT’s surface properties and address such surface-

based problems, including surfactants, oxidation, sonication and functionalization [1]. Of these, 

surface functionalization has been identified as a promising approach [1]. Functionalization implies 

the covalent grafting of a specific chemical functional group to the surface. Intuitively, the addition 

of oxygen-based functional groups would seem like a viable route to decrease hydrophobicity and, 

possibly, make them more compatible to be used in nanocomposites [7] and bio-applications [8].  

Covalent functionalization, in which functional groups (such as amino and carboxylic acid 

groups) are grafted onto SWCNT walls, help overcome attractive forces can prevent this 

agglomeration and lead to better dispersion [7, 13]. Moreover, the higher reactivity of treated 

SWCNTs, as well as their increased interfacial bonding and load transfer with the surrounding 

polymer resulting from reactive functional groups (oxygen- or nitrogen-containing groups) after 

treatment leads to an increase in mechanical and electrical properties of nanocomposites [7]. Given 

the wide range of polymer materials (hydrophobic and hydrophilic) and subsequent filler-matrix 

interactions, a technique capable of tailoring SWCNT wettability is required. 

In the case of biomedical applications, there are significant contradictions in the literature 

concerning the effect of such SWCNT functionalization on their cytotoxicity [16]. For example, 

some indicate that functionalization of SWCNTs using carboxylic acid groups reduces cell viability 

and proliferation [17-19], whereas Montes-Fonseca et al. (2012) reported less cytotoxicity for 

functionalized CNTs [20]. A deep examination of the literature reveals that the contradiction comes 

from different CNT properties (i.e. wettability, functional group charging, variation of SWCNT size, 

degree of purity and effect of surface energy, etc.) [21]. Furthermore, the contradictions regarding 

cell response to functionalized SWCNTs in the literature can likely be attributed to the fact that 

individual reports do not study surface treatments over wide ranges (i.e. no attention typically paid to 

the extent of functionalization) – essentially, a single treatment is applied and the cytotoxicity is 

analyzed [22, 23]. Beyond the issue of cytotoxicity, applications such as the selective binding of 

specific blood proteins (that can have polar and non-polar components) to CNTs can necessitate 

hydrophobic or hydrophilic surfaces [24, 25]. Therefore, before any practical biomaterial 

applications of CNTs can be considered, it is necessary to address the issue of surface wettability. 

Specifically, there is a need to study a surface modification technique capable of controlling the 

extent of the functionalization. Such a method should allow a “full range” of properties (from 

superhydrophilic to superhydrophobic, for example) using a similar reaction scheme and functional 

groups.  

 Functionalization techniques can be classified into two groups: solvent-based (wet chemistry) 
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and solvent-free (gas-phase) methods. Solvent-based approaches suffer from multi-step and complex 

preparation methodologies and can damage the CNT structure. Furthermore, separation of the treated 

nanomaterials from the solvent, as well as the management of solvent waste, can be a time-

consuming and significant processing issue, which is generally dodged in the literature [26-30]. Gas-

phase surface modification techniques can be classified according to the energy source applied for 

reaction initiation, including thermally activated chemical vapor deposition (TACVD) [31], plasma-

enhanced CVD (PECVD) [32] and photo-initiated CVD (PICVD) [27]. Table 1 presents a detailed 

comparison between the current functionalization methods for CNTs.  

 Unlike TACVD (which uses heat, problematic for temperature-sensitive substrates) and 

PECVD (which requires specialized and costly plasma conditions), PICVD uses light to initiate 

organic deposition reactions. In this process, radicals can be generated by exposure to ultraviolet 

(UV) light, launching a series of heterogeneous reactions on the surface of a substrate in parallel 

with gas phase reactions. PICVD has been gaining interest for the surface treatment of nanomaterials 

because of its simple procedure, low cost, possibility of operation at or near atmospheric pressure 

(depending on the wavelength selected) [27, 32], higher intermolecular cross-linking [33], low 

energy consumption [27, 32] and, most importantly, ability to adjust the desired degree of 

functionalization [33].  

 A key parameter for PICVD is the selection of an appropriate monomer to impart the desired 

functional groups and surface properties (hydrophilic or hydrophobic). The selected monomer 

should therefore contain the desired chemical moieties, as well as contain groups capable of forming 

radicals following exposure to light at the selected wavelength. Ozone is a UV sensitive molecule 

that can be used as a precursor for oxidative attacks on SWCNTs [34]. It absorbs light significantly 

at 253.7 nm (peak emission in Hg discharge lamps), with an efficient quantum yield [34]. 

Accordingly, it can be a good precursor to treat SWCNTs under PICVD, given that Hg discharge 

lamps are commercially available at low cost (in the form of germicidal lamps) and light at 253.7 nm 

(UVC) is readily transmitted through common materials such as quartz. 

 Beyond oxidative attacks with ozone (which are limited to imparting hydrophilic 

functionalities on CNTs), it is possible to form organic coatings with UVC light, namely by using 

syngas as a precursor [27]. Our research team has previously demonstrated that syngas (CO and H2) 

could be used in PICVD to form hydrophilic and hydrophobic surfaces on copper substrates by 

manipulating treatment pressure (near atmospheric) and CO/H2 ratio [27]. In this process, radicals 

produced from the dissociation of a photo-initiator (PI) and the precursor mixture lead to a 

combination of gas phase and surface reactions to impart surface functionality [31, 32].  
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    Surface wettability can be investigated through contact angle (CA) measurements, namely 

through two approaches: static and dynamic methods. Static (or “sessile drop”) CA is a measure of 

the angle between a liquid droplet (of known polarity) and the surface of interest. This method has 

been applied extensively by CNT researchers - Woo et al. (2010) found that the static CA with 

water of CNT films oxidized at 400 qC for 30 min under air flow was 96.9q [35]. Koumoulos and 

Charitidis (2017) measured the static CA to assess the wettability of CNT arrays synthesized by 

CVD, finding values of. 136q and 150q for water and glycerol droplets, respectively [36]. Liu et al. 

(2017) surface treated CNT films by atmospheric pressure plasma using a mixture of helium and 

oxygen, leading to a static contact angle decrease from 105° to 80°, 64°, and 47° only after 0.1, 0.2, 

and 0.3 s treatments, respectively [37]. Indeed, oxygen plasma functionalization is a common 

method to make CNTs hydrophilic [38, 39] Similiarly, Wang et al (2009) measured the wettability 

of graphene and graphene oxide thin films, reporting surface energies of 46.7 and 62.1 mJ/m2, 

respectively [40]. Alternatively, the dynamic CA assesses the angle between the liquid and the 

surface under moving boundaries (three phases: air, liquid and solid film). The dynamic CA is 

defined through three major parameters: advancing CA (TA), receding CA (TR), and CA hysteresis. 

TA indicates the wetting ability of a liquid on a solid film upon initial contact, whereas TR describes 

the difficulty of removing the liquid from the surface. CA hysteresis is defined as the difference 

between the two (TA - TR). Dynamic CA serves as an indicator of surface quality in terms of 

inhomogeneity of chemical treatment, roughness, and stability [41-43]. For example, Lau et al 

(2003) employed dynamic CA to investigate the stability and wettability behavior of aligned CNT 

forests coated by poly(tetrafluoroethylene)(to make superhydrobic surfaces through a combination 

of chemical and roughness changes) [44]. Aside from CA approaches, an inverse gas 

chromatography-surface energy analyzer (IGC-SEA) may be used to assess expected wettability 

[45, 46]. For example, Li et al.(2016) measured surface energy of carbon fibres coated with carbon 

nanotubes. They could successfully fabricate CNT coated Carbon fibres by electrospray method 

resulted in a multi-scale hierarchal structure without any tensile strength changes of fibres [47].  

Both CA and IGC-SEA approaches applied to CNT rely on measurements of the nanomaterials in a 

bucky paper configuration (or deposited/grown on a surface) – in other words, in aggregate form. 

To measure the wettability of individual CNTs, indirect measurements must be applied, typically 

with the CNT in a dispersed state – these can range from stability of CNT in suspension [48] to 

measurements of the zeta potential (with corrections applied for high-aspect ratio particles) [49]. 

 To the best of our knowledge, the use of syngas and PICVD (syngas/PICVD) on SWCNTs has 



 6 

never been investigated, and shows potential as a viable method to systematically modify CNTs over 

a wide range of surface energy. Given the importance of process control and materials customization 

in the fields of chemical and materials engineering, we consider this exploration to be significant. 

Hence, the main goal of this study is the surface treatment of SWCNTs by syngas/PICVD to allow 

the addition of oxygen-containing functional groups and thus obtain different degrees of 

functionalization and, consequently, various surface energies. In this regard, syngas/PICVD is 

compared with an ozone/UV-based (ozone/UV) treatment. 

 
Table 1. Comparison between some common functionalization methods of nanoparticles and carbon nanotubes 

Methods Type Advantages  Drawbacks  Ref. 
 

Wet 
chemistry  

Covalent (liquid 
phase) 

1- Easy scale-up  
2- Facile control of the extent of hydrophilicity 
3- Potentially low-cost method (depending on reagents) 
 

1- Multi-step process  
2- Unable to make and control extend of hydrophobicity  
3- Time consuming 
4- Solvent waste management  
5- Destructive method for hexagonal structure of CNTs 
6- Specific complex reagents for the functionalization  
 

[27-
29] 

Surfactants  Non-covalent 1- Able to make both hydrophilic and hydrophobic surfaces 
(with different or amphiphilic molecules) 
2- Non-destructive method for the hexagonal structure of CNTs 
3- Preserves the mechanical and electrical properties of 
SWCNTs 
 

1- Low stability due to weak binding forces  
2- Extended sonication period required 
3- Poor scale reliability 
 

[50-
52] 

TACVD Covalent (gas-
phase) 

1- Large scale treatment 
2- Able to make and control extend of functionality  
3- High deposition rates and conversions  
 
 

1- Vacuum requirement  
2- High temperature requirement  
3- Lack of appropriate range of monomers 
4- Expensive (processing and capital costs)  
5- Poor energy efficiency 
6- Destructive method for the hexagonal structure of CNTs 
7- Difficult to make hydrophobic surfaces  
  

[28, 
31] 

PECVD Covalent (gas-
phase) 

1- Large scale treatment (atmospheric discharges) 
2- Able to make and control extend of functionality 
3- High deposition rates and conversion  
4- Control on deposition temperature 
 

1- Expensive (processing and capital costs, specialized operation) 
2- Unreacted precursors and by-products, often embedded in 
functional coating 
3- Low efficiency because of the energy wasted on low energy 
electrons  
4- Unstructured coatings with low cross-linking 
5- Limited to small scales for low-pressure discharges 
 

[31, 
48, 
53-
55] 

PICVD 
(ozone/UV) 

Covalent (gas-
phase) 

1- Large scale treatment  
2- Low cost 
3- Highly cross-linked coating  
4- No vacuum/high pressure requirements 
5- Room temperature process 
6- High quality films due to low excitation energy 
 

1- Unable to create hydrophobic coatings 
2- Limited control on extent of hydrophilicity 
3- Low conversion and deposition rate 
4- Destructive method for SWCNT structures 

[33, 
56, 
57] 

PICVD 
(syngas/UV) 

Covalent (gas-
phase) 

1- Potential for large scale treatment 
2- Low cost processing (inexpensive monomers and PI)  
3- Able to make both hydrophilic and hydrophobic surfaces 
(various extents) 
4- Highly cross-linked coating 
5- Low energy consumption  
6- Selectivity; high control of the overall process (film 
properties) due to mono-energetic photons that limit reaction 
pathways 
7- No vacuum/high pressure requirements 
8- Room temperature process 
9- High quality films due to low excitation energy 
10- Increased stability compared to their low-pressure plasma 
counterparts 

1- Low conversion and deposition rate 
 
 

[27, 
28, 
58] 
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2. Materials and Methods  
2.1. Materials  

 
 Pure SWCNTs (P-SWCNTs) grown by radio frequency induction thermal plasma were 

purchased from Raymor-NanoIntegris (96.5% w/w, Quebec, Canada). The main impurities 

remaining in the purchased P-SWCNTs are Fe, Ni, Y and amorphous carbon (as identified by XPS 

and TEM measurements). Hydrogen peroxide (H2O2, 50% (w/w)) and n-hexadecane (≥99%, EMD-

Millipore) were purchased from Fisher Scientific (Montreal, Quebec). Ozone was generated by an 

Ozone Solutions TS-40 ozone generator (20 g/h), with ambient air as the gas source. Syngas (CO 

and H2, Air Liquide, chemically pure) and argon (Air Liquide, 99.9%), were used as the 

functionalization precursors and purging gas, respectively. Two 96 cm-long UVC germicidal lamps 

(Model T-97505-80, Cole-Parmer Inc) were used for all experimental treatments (main emission 

peak at 253.7 nm, irradiance of 0.01 W/cm2 at 3.5 cm, measured with an ILT1700 Radiometer 

equipped with a SED240 detector from International Light Technologies). 
 

 

          

 

 

 

 

   

 

 

 

 

 

 

Fig. 1.  Schematic of the PICVD setup. 

 

 

2.2. PICVD Setup  

 

 The PICVD reactor used consists of two UVC lamps and a 25-mm internal diameter quartz 

tube reactor (Fig.1). A syringe pump was used for H2O2 injection and Brooks mass flow controllers 

Treatment process 

Vacuum 

Ventilation 

Plug Reactor 

Flow Controller 

Ar gas CO 
gas 

H2 gas 

 
 
 
 
 

SWCNT 
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(series 5850E) were used to inject precursors (CO and H2). A centralized vacuum system was 

applied when working at sub-atmospheric pressure (down to -20 kPa). 

 

2.3. Surface Modification  

 

To modify SWCNT surfaces, the method developed by Dorval Dion et al. (2014) was used 

[27]. Accordingly, P-SWCNTs (in the form of bucky paper) were placed inside the quartz reactor, 

which was then closed and sealed. Within the same reactor, SWCNTs were treated with one of two 

different precursors: ozone or syngas. In the case of ozone treatments, the reactor was purged for 

two minutes with argon at a rate of 3 L/min then connected to the ozone generator. Ozonated air (5-

7% w/w ozone, 500 ml/min) was fed to the reactor under different conditions presented in Table 2. 

In Table 2, experimental treatments 2 to 6 are related to the SWCNTs treated by ozone/UV while 

experiments 7 to 27 are dedicated to investigating the effects of treatment time, pressure, position of 

samples inside the reactor and hydrogen peroxide injection. In the case of syngas/PICVD 

treatments, the reactor was also purged with argon, then CO and H2 precursors (total flow rate of 

350 ml/min) were introduced at various ratios and conditions, as per Table 2. H2O2 was injected 

simultaneously via the syringe pump as a radical photo-initiator (PI) at a rate of 1 μL/s, directly into 

the syngas stream. Each experimental treatment was repeated at least 3 times. Six independent 

variables, including precursor molar ratio (H2/CO), pressure, treatment time, flow rate of precursors 

and use of PI and position of samples inside the reactor were studied. According to the desired 

surface functionality, the process can be operated under slight pressure (up to +15 kPa) or slight 

vacuum (down to -20 kPa). Hydrophilic surfaces are typically obtained under slight vacuum, using 

hydrogen peroxide, and near the reactor inlet (16 cm), while hydrophobic surfaces are achieved 

under pressure closer to the outlet (82 cm), based on previous work performed with copper [27]. 

During treatment, the surface temperature was monitored using an IR Infrared thermometer. 

Treatment started at room temperature (~25 qC). Upon activating the UVC lamps, the temperature 

increased to ~52 °C over the first 15 min, and remained constant until the end of treatment 

(temperature increase attributable to heat emission from the UVC lamps). 
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Table 2.  Experimental treatment conditions with corresponding wettability (contact angle/surface energy) 

Samples 
 

Experimental Conditions Characterization 

Number Description Ratio 
(H2/CO) 

H2O2 
 

Time 
(min) 

Pressure 
(kPa) 

Location 
(cm) 

Flow Rate 
(ml/min) 

Average 
 Contact Angle 

Surface Energy 
(mN/m)  

 
1 n/a purified - - - - 500 79±2 ° 31 
2 ozone/UV ozone Yes 60 -20 14 500 < 5° 73 
3 ozone/UV ozone No 30 -10 14 500 < 5° 73 
4 ozone/UV ozone Yes 75 -10 82 500 < 5° 73 
5 ozone/UV ozone Yes 60 +15 14 500 < 5° 73 
6 ozone/UV ozone No 60 +15 82 500 < 5° 73 
7 syngas/PICVD 0.12 Yes 180 -15 14 350 0±3 ° 73 
8 syngas/PICVD 0.12 No 120 +15 82 350 156±7 ° 36 
9 syngas/PICVD 0.12 Yes 60 -15 14 350 31±2 ° 64 
10 syngas/PICVD 0.12 Yes 90 -15 14 350 25±5 ° 67 
11 syngas/PICVD 0.12 Yes 120 -15 14 350 5±3 ° 72 
12 syngas/PICVD 0.12 Yes 180 -15 14 350 0±3 ° 73 
13 syngas/PICVD 0.6 Yes 60 -15 14 350 29±1 ° 65 
14 syngas/PICVD 1 Yes 60 -15 14 350 47±5 ° 54 
15 syngas/PICVD 2 Yes 60 -15 14 350 36±3 ° 60 
16 syngas/PICVD 3 Yes 60 -15 14 350 59±4 ° 45 
17 syngas/PICVD 0.16 Yes 60 -15 14 350 22±3 ° 68 
18 syngas/PICVD 0.16 Yes 60 -15 14 300 27±3° 65 
19 syngas/PICVD 0.16 Yes 120 -15 14 350 4±7 ° 73 
20 syngas/PICVD 0.16 Yes 60 -15 14 400 49±2 ° 52 
21 syngas/PICVD 2 Yes 120 -15 14 350 15+3 ° 70 
22 syngas/PICVD 0.12 Yes 120 +15 82 350 127± 5° 29 
23 syngas/PICVD 0.12 No 120 -15 82 350 93± 6° 26 
24 syngas/PICVD 0.12 No 120 +15 14 350 58± 4° 44 
25 syngas/PICVD 0.12 No 60 +15 82 350 141± 6° 33 
26 syngas/PICVD 2 Yes 120 +15 82 350 135± 3° 31 
27 syngas/PICVD 3 No 120 -15 82 350 115± 2° 27 

 

 

2.4. Surface Characterization  

 

X-ray photoelectron spectroscopy (XPS) was performed with a VG ESCALAB 3 MKII 

system using Mg KD x-rays, with a pass energy of 100 eV and energy step size of 1 eV for survey 

scans. High-resolution (HR) spectra of treated SWCNT (T-SWCNT) buckypapers were obtained at a 

pass energy of 20 eV, in increments of 0.05 eV. Some of the XPS characterizations were also 

performed by Kratos Ultra DLD system with a pass energy of 160 eV and step size of 1 eV for 

survey scans and a pass energy of 20 eV and step size of 0.05 eV for HR spectra, using Al KD x-

rays. Peak fitting was performed as described by Yang and Sacher [59], using the Wagner table for 

sensitivity factors. Background correction was based on the Shirley method, used within the Thermo 

Avantage (V4.12) software package. Chamber pressure was kept 5 x 10-9 torr. 
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 Surface wetting was assessed through sessile drop contact angle (CA) measurements using a 

FDS OCA DataPhysics TBU 90E tensiometer. 2 PL droplets of water (as a polar liquid) or n-

hexadecane (as a nonpolar liquid) were deposited on 3 different areas of the samples, 3 successive 

times, in order to obtain the average CA. The exposure time between the droplet and the surface 

was considered 3 s for all experimental treatments. The surface energy was obtained by applying 

the Owens-Wendt method (Equation 1) to CA measurements (    with the two different liquids 

(water/polar and n-hexadecane/nonpolar) [60]. The total free surface energy (γs) was obtained by 

gathering the polar (γs
p) and dispersive (γs

d) components based on Equation 2. Table S1 in 

supplementary results presents the related information of the liquids. 

                  
   

  
   

    
   

                      (1)  

     
    

                       (2) 

 Where  sl,  l
d and  l

p are the solid-liquid interfacial energy, the total dispersive component 

and the polar component of liquid surface tension, respectively. 
 Transmission electron microscopy (TEM, JEOL model JEM2100F) was used to investigate 

the effect of treatment on SWCNT morphology. The TEM grids used were coated with a lacey 

carbon film (D20045 grids with formwar substrates, Ni mesh 400, SOQUELEC International). To 

collect samples, T-SWCNTs were dispersed in methanol at a concentration of 1 mg/mL; TEM grids 

were then briefly dipped in this suspension (~ 1 s) and analyzed after drying. 

 The integrity of SWCNT samples was assessed by Raman spectroscopy using a Renishaw 

Invia Reflex Raman microscope equipped with an argon laser (514 nm), scanning in the range of 

300-3500 cm-1. Peak deconvolution was completed through the Renishaw Wire 3.4 software. 

Gaussian and Lorentzian line shapes were employed for all Gc and Dc bands, respectively, as this 

combination provides appropriate fits for Raman bands, especially to identify disorder in SWCNTs 

[61]. 

 Thermal stability was assessed through thermogravimetric analysis (TGA, Model Q500, TA 

instruments) under air atmosphere. The temperature range was 30-800 ◦C, with a heating rate of 10 ◦ 

C/min for all samples. All experimental treatments were carried out with a platinum TGA pan (4 to 5 

mg).  

 

 

3. Results and discussion  
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3.1. Physical Characterization 

 
To analyse the efficiency of ozone/UV and syngas/PICVD treatments on SWCNTs, we have 

first determined the physical properties of the treated samples. Table 2 presents the experimental 

conditions, related water contact angle and surface energy results for ozone/UV and syngas/PICVD 

treatments. The average water CA of P-SWCNT samples was 79r2° (Fig. 2A). For all SWCNTs 

treated by ozone/UV (Experimental treatments 2-6), the water CA was <5° (below the detection limit 

of the instrument), irrespective of treatment time, pressure or position (Fig. 2B). This behavior is 

expected: ozone peak absorption overlaps with that of the UVC lamps used [62]. These results are 

consistent with those of Wang et al. (2010), where they showed that ozone/UV treatments of 

vertically aligned multi-walled carbon nanotubes for 5 min could lead to superhydrophilic surface 

behavior (reactor operating with 0.2 L/min flow of oxygen gas supply at 50 qC) [62]. Since the peak 

absorption cross section of ozone is found at 253.7 nm, treatments under UVC light (O = 200 to 300 

nm) cause it to break down into oxygen gas (O2) and reactive O radicals. These can react with defects 

sites (or dangling bonds) on the P-SWCNT surface, leading to the formation of -COOH, OH, and CO 

groups [62]. While ozone/UV allow for the possibility of sidewall functionalization on SWCNTs, 

longer ozone/UV treatments can actually destroy the SWCNTs’ hexagonal carbon structure [63, 64]. 

While these experiments and previous works show ozone/UV’s ability to produce superhydrophilic 

SWCNT surfaces [62, 65], it highlights its inability to vary surface energy over a wide range even by 

changing effective parameters such as treatment time, pressure and position inside the reactor 

(Experimental treatment 2 to 6). 

Syngas/PICVD, on the other hand, can generate superhydrophilic surfaces (Table 2, treatment 

7, CA<5°, Fig. 2C), all the way to superhydrophobic (Table 2, treatment 8, CA>150°, Fig. 2D), 

mainly by varying sample position from 14 to 82 cm, treatment pressure from -15 to +15 kPa and 

absence of hydrogen peroxide as PI. The key parameters influencing hydrophobicity are pressure and 

location. These are illustrated by comparing treatment 8 and 23: save for pressure, both experiments 

have the same conditions – a lower pressure (- 15 kPa) leads to more hydrophilic behavior. Similarly, 

experiment 24, compared to experiment 8, changes only location, showing that positioning the 

sample closer to the inlet results in hydrophilic behavior. The effect of position can be attributed to 

the accessibility of syngas-derived radicals, activated monomers and PI-derived species  (like OH*) 

in the reactor [27, 66], while treatment pressure affects the organic chain growth rate and collisions 

between species and substrate surfaces [27, 67-69]. These effects can also be adjusted to allow 

intermediate properties to be achieved (Table 2). Moreover, our findings based on tensiometry 
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characterization show that H2O2 addition tends to make surfaces more hydrophilic, given that it 

photo-dissociates under UVC light (peak between 180 and 200 nm) to generate two hydroxyl radicals 

(OHx) that can actively participate in the radical-driven syngas and form additional oxygen-

containing (hydrophilic) groups [27, 34].  
  

 

Experimental treatments 9 to 12 (Table 2) show that SWCNTs become more hydrophilic as 

a function of treatment time (from 31° at 60 min to 0° at 180 min), likely as a result of additional 

functional group deposition. Experimental treatments 9, 13 to 17, show that the H2/CO molar ratio 

plays a significant role in the syngas/PICVD treatment (p<0.05). Indeed, molar ratio is known to 

play a significant role in binary precursor systems [10, 48, 56, 70]. Several authors used binary 

mixtures consisting of an oxygen-containing monomers (e.g. O2 or N2O) and a hydrocarbon (e.g. 

CH4 or C2H4) to treat SWCNTs [10, 48, 56, 70] and showed that the concentration of certain 

functionalities (mostly hydroxyl, carbonyl and carboxylic acid groups) can increase along with an 

increase in the ratio of oxygen- or nitrogen-containing precursors to hydrocarbons. Fig. 3 shows 

CA Left: 1.5 ° 
CA Right: 2.3 °  C 

CA Left: 79.5 ° 
CA Right: 78.8 ° 

B A CA Left: 0 ° 
CA Right: 0° 

CA Left: 155.0 ° 
CA Right: 154 °  

D 

Fig. 2. CA measurement obtained by tensiometry A) P-SWCNT (Experimental treatment 1), B) SWCNTs treated by 
ozone/UV for 1h (Experimental treatment 2), C) SWCNTs treated by syngas/PICVD under vacuum for 3h (Experimental 
treatment 7), D) SWCNTs treated by syngas/PICVD under pressure for 2h (Experimental treatment 8).  

CA Left: 0 ° 
CA Right: 0 °  

B 
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that the CA of SWCNTs treated by syngas/PICVD (experimental treatments of 13 to 17 in addition 

to experimental treatments 9) generally increase as a function of the molar ratio (H2/CO), likely 

because fewer oxygen-containing groups are present to increase wetting as the ratio increases. This 

is confirmed with the overlaid surface tension results. The experimental treatments in Fig. 3 are 
performed at a constant pressure and reactor position – varying these parameters in combination 

with molar ratio allows for a full range of surface energies to be attained ranging from 0 ° to 156 ° 

(Table 2).  

Beyond monomer ratio, our results show that total flow rate in the PICVD reactor can play a 

role in the final surface properties, given that it will impact residence time in the reactor and, 

therefore, the probability of collisions between the radicals and the substrate. Except for 

experimental treatments 18 and 20, all treatments were performed with a total flow rate of 350 

ml/min. These two experimental treatments (at 300 and 400 mL/min, respectively), when compared 

to experiment 17, served to investigate the effect of flow rate. Both experimental treatments 18 and 

20 yielded CA higher than at the nominal 350 ml/min flow rate (p-value < 0.05), indicating that 

hybrid effects may be at play – the reaction domain may switch from deficient to efficient regions 

(similar to the effect of position). The specific effect of residence time is studied by Farhanian et al 

(2017) [58]. They reported an increase in film thickness as a function of residence time for a 

syngas/PICVD system treating flat surfaces [58]. 

 

 
Fig. 3. Black squares: Contact angle measurements of T-SWCNTs obtained by tensiometry in terms of molar ratio of 
H2/CO; Red circles: Surface energy measurements that have been plotted in terms of molar ratio. Error bars show 
standard deviation of three measurements. 
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It is pertinent to note that the surface energy values presented in Table 2, computed using the 

Owens-Wendt model (equations 1 and 2), do not consider surface roughness. For this reason, some 

aberrant values are possible; for example, the surface energy calculated by the tensiometer’s 

software package for experimental treatment 8 (showing superhydrophobic behavior with a contact 

angle of 156°) is 36 mN/m, nearly unchanged from the far more hydrophilic P-SWCNT (treatment 

1, with a contact angle of 79°, 31 mN/m). Given that PICVD treatments on flat surfaces have shown 

the formation of nanostructured, island-like deposits [58, 71, 72], it is very likely that the increase 

in roughness plays a large role in the observed wetting behavior. 

TEM characterization was done to provide more insight regarding the morphology and structure 

deposited coatings of T-SWCNTs by syngas/PICVD. Fig. 4 show the morphology of SWCNTs 

before (A,C) and after (B,D) treatment by syngas/PICVD under slight vacuum (-15 kPa, 

experimental treatment 11). The principal change observed is the appearance of an apparently 

polymeric layer on the treated sample. The SWCNT diameter grew from 1.4 nm before treatment to 

5.3 nm after treatment.  
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3.2. Chemical Characterization 

 
 We have determined the chemical properties of SWCNTs treated by ozone/UV or 

syngas/PICVD treatments using XPS. During ozone/UV treatment, the relative oxygen atomic 

Fig. 4. TEM micrographs of A: P-SWCNTs (Experimental treatment 1), B: Syngas Treated SWCNTs (Experimental 
treatment 11), C: P-SWCNTs with lower magnification (Experimental treatment 1), D: Syngas treated in lower 
magnification (Experimental treatment 11). 

B 

5.3 nm 

1.4 nm 

A 

C D 
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percentage obtained by XPS survey spectra increased to 20.8% after 30 min (Experimental 

treatment 3) from untreated P-SWCNTs’ 6.9% oxygen content, due to the successful deposition of 

oxygen-containing groups on the SWCNT surfaces by PICVD (Supplementary Fig. S1) (p-

value<0.05). HR-XPS fitting of the C1s peak (Supplementary Fig. S2) shows 6 major 

functionalities compared to P-SWCNTs: A) 284.6 eV, corresponding to C=C (sp2); B) 285.7 eV, 

corresponding to C=C (sp2) with defects and C–C (sp3); C) 286.5 eV, assigned to C–O; D) 288 eV, 

assigned to C=O and SoS transition of C=C with defects; E) 289 eV, corresponding to O–C=O; 

and F) 291.3 eV, assigned to highly delocalized SoS transition of C=C [73]. Successful 

incorporation of oxygen-containing groups (mostly –COOH, C=O and -OH) on the SWCNT 

surfaces after ozone/UV treatment is confirmed, in agreement with previous studies [57]. Raja et al. 

(2014) had reported successful incorporation of oxygen-containing groups such as carboxylic acid, 

hydroxyl and carbonyl groups to SWCNTs while they treated SWCNT under ozone/UV or UV and 

benzophenone [57]. Experimental treatments 2 to 4 were also used to investigate the effect of 

treatment time in the case of SWCNTs treated by ozone/UV-treated SWCNT (O-T-SWCNT) by 

applying 60, 30, and 75 min, respectively. As seen in Supplementary Fig. S3 (inset), oxygen content 

reaches a plateau ca. 20-26% after 30 min. However, Supplementary Fig. S3 (over plot of C1s HR-

XPS spectra of SWCNTs treated by ozone/UV with 60, 30, and 75 min) did not show a significant 

difference as a function of treatment time. Vautard et al. (2012) reported gas-phase surface 

treatment of carbon nanofibers in a reactive ozone environment with residence times on the order of 

2 min. Their results are in agreement with ours, showing successful incorporation of oxygen-

containing groups onto carbon nanofibers [73]. 

 The oxygen content of syngas/PICVD-treated SWCNTs (S-T-SWCNTs, Experimental 

treatment 1) climbed to 60.1%, with the balance being carbon (18.1%) and iron (21.8%) 

(Supplementary Fig. S1). The presence of iron (binding energy of 714.4 eV) can be attributed to iron 

pentacarbonyl (Fe(CO)5) in the CO tank, a common impurity that forms over time in steel tanks 

exposed to CO; it can readily decompose under the action of heat or UVC light [74]. Fig. 5A and 5B 

show C1s and O1s HR-XPS spectra of P-SWCNTs to provide comparison with the treated SWCNTs. 

According to the C1s HR-XPS spectra (Fig. 5C), the syngas-based coating was composed of C-C, 

hydroxyl (-OH), carboxylic acid (COOH), and carbonate groups, corresponding to binding energies 

of 285, 286.7, 288.9, and 289.8 eV, respectively. Interestingly, the C1s peak for the treated sample 

became wider, compared to the untreated sample’s more sharp and narrow peak, implying that the 

coating completely covered the SWCNT surface [75]. Based on the O1s spectra (Fig. 5D), S-T-
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SWCNTs have two major peaks at binding energies of 530 and 531.65 eV, which are assigned to O-

Fe (or Fe2O3) and C-OH, respectively (though Fe(OH)3, phenol and O=C-O-Fe are also possible) 

[73]. Based on the Fe2p high resolution XPS spectra (Fig. 5E), deposited iron species consisted of 

Fe2O3, FeOOH, and Fe3O4 based on peaks at binding energies of 710.55, 713.55, and 718.75 eV, 

respectively [73]. The Fe2O3 and Fe3O4 are likely the result of decomposition initiated by the 185 nm 

peak (as discussed earlier), or through degradation of Fe(CO)2 radicals through collision with 

reactive species and hydrogen peroxide. Overall, the iron content is essentially in the form of HO-Fe-

O, Fe(OH)3 and FeCO due to chemical bond beween iron and carbon.  
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  1 

Fig. 5. A: High resolution C1s spectra of P-SWCNT (Experimental treatment 1); B: High resolution O1s spectra of P-SWCNT 
(Experimental treatment 1); C: High resolution C1s spectra of S-T-SWCNT (Experimental treatment 11); D: High resolution O1s 
spectra of Treated SWCNT (Experimental treatment 11); E: High resolution Fe2P spectra of T-SWCNT (Experimental treatment 
11).  
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To elucidate the role and effect of each individual precursor (H2, CO, H2O2) on coating 2 

composition, we performed some blank experiments on glass substrates (thereby eliminating 3 

interactions that may occur with SWCNT) (supplementary Table S2). The C1s HR-XPS spectra for 4 

bare glass (supplementary Fig. S4A) showed four peaks at binding energies of 285, 286.75, 288.78 5 

and 288.46 eV, assigned to aliphatic carbon or C-C, C-OH and carboxylic acid (COOH) groups, 6 

respectively (carbon sourced from airborne contaminants). The O1s spectra (supplementary Fig. S4B) 7 

showed two peaks at binding energies of 531.30 and 532.62 eV, corresponding to OH and SiO2 8 

groups, respectively. After treatment with CO, H2 and H2O2, the same results and structure as those 9 

observed on SWCNTs were obtained. Compared to bare glass, the C1s spectra (supplementary Fig. 10 

S4C) showed two additional peaks, namely C-Fe and carbonyl groups at binding energies of 284.1 11 

and 290.26 eV, respectively. Moreover, treated glass exhibited decreased hydroxyl groups and 12 

significantly increased carboxylic groups. The O1s spectra (supplementary Fig. S4D) showed three 13 

new peaks at binding energies of 530.18, 531.67 and 532.61 eV assigned to O-Fe, C-OH groups and 14 

O=C-O-Fe, respectively.  15 

In the absence of H2O2 (CO and H2 only), treatment lead to the appearance of two extra peaks 16 

compared to bare glass, at binding energies of 284.33 and 289.55 eV (supplementary Fig. S4E). These 17 

correspond to C-Fe (or C-Si, as Si could be still seen after treatment in survey peaks), and carbonate 18 

groups (adsorbed CO2), respectively. The spectra are generally similar to the CO+H2+H2O2 case, with 19 

increased carboxylic (COOH or COOC) and decreased carbon-bonded hydroxyl groups in the 20 

structure. The O1s spectra (supplementary Fig. S4F) also showed three peaks at binding energies of 21 

530.18, 531.67 and 532.61 eV assigned to O-Fe, OH and O=C-O-Fe, respectively. While the 22 

chemical differences appear small, the film produced in the absence of H2O2 showed significant 23 

morphological differences: it appeared as a powder adsorbed on the substrate (not a bound film) and 24 

could be removed by shaking lightly. Based on this observation, we can conclude that H2O2 plays a 25 

determinant role as both a photo-initiator and during film formation.  26 

Knowing that CO can absorb light below 200 nm [27] (including the 185 nm emission peak 27 

from the Hg lamps), and that it contains Fe(CO)5, it may lead to deposition without the addition of H2. 28 

When combining CO with H2O2 (without hydrogen), the C1s spectra (supplementary Fig. S4G) shows 29 

two peaks not present for bare glass at binding energies of 283.9 and 287.3 eV, assigned to C-Fe and 30 

C=O, respectively. The peak at binding energy 289.3 eV was also quite significant compared to its 31 

bare glass counterpart – it corresponds to carboxylic acid groups bonded to carbon. The O1s spectra 32 
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(supplementary Fig. S4H) showed three peaks (530.19, 532.06 and 533.05 eV) assigned to Fe-O (or 33 

Fe(OH)O or Fe3O4), O-Si and chemisorded H2O. As expected, combining H2O2 with only H2 lead to 34 

no deposit and HR-XPS spectra (supplementary Fig. S4I and S4J) identical to bare glass. 35 

 36 
 37 
3.3. Thermal Stability and Defects 38 

 39 

In order to quantify deposited functionalities on SWCNTs, we performed TGA analyses. Fig. 40 

6 shows TGA and Derivative Thermogravimetric Analysis (DTGA) of P-SWCNTs (experimental 41 

treatment 1), S-T-SWCNTs (CO+H2+H2O2, experimental treatment 11) and SWCNT exposed to 42 

UVC light as a blank experiment. The DTGA graph of P-SWCNT shows two peaks around 618.5 43 

and 542.4 qC, assigned to SWCNTs with sp2 hybridization and disordered SWCNTs with sp3 44 

hybridizations, respectively [76]. The P-SWCNTs showed 77.2% carbon with sp2 hybridization and 45 

14.9% residue which corresponds to metallic and inorganic impurities. There are no significant 46 

differences or decomposition shifts between P-SWCNT and SWCNT exposed to UV light. Using 47 

the mass loss of P-SWCNTs at 360 qC as a reference (10%), the mass loss of S-T-SWCNTs is about 48 

26%, meaning that treatment leads to decomposition at a lower temperature. This is consistent with 49 

previous work where it was shown that a higher amount of functionalities leads to a lower 50 

degradation temperature because of more treatment-induced physical defects on the tubes’ surfaces 51 

and end-caps [57]. The DTGA of S-T-SWCNT shows two new peaks around ca. 113°C and 329°C 52 

which are related to oxygen-containing groups and carbon coating on SWCNTs, respectively [77]. 53 

The SWCNT peak is also shifted to lower temperatures (from 618.5 to 451.3°C) after treatment 54 

(consistent with mass loss results). S-T-SWCNTs presented 0.7% humidity, 19.5% deposited carbon 55 

with sp3 hybridization, 38.7% carbon with sp2 hybridization and 35% metallic residue. The increase 56 

of iron content agrees with XPS results (presence of iron).  57 

 58 

 59 

 60 

 61 

 62 

 63 

 64 
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 65 
Fig. 6. TGA/DTGA graphs comparing thermal mass loss of P-SWCNTs (Experimental treatment 1), SWCNTs exposed 66 
to UV and S-T-SWCNTs treated (Experimental treatment 11). 67 

 68 

We characterized T-SWCNTs by Raman spectroscopy to study their hexagonal structure 69 

after treatments. Table 3 (extracted from Fig. S5 in supplementary results) shows the Raman 70 

spectrum results used to assess SWCNT integrity. The ratio of D- to G-bands in Raman spectra 71 

presents defects produced in the hexagonal structure [61]. This ratio is lower for P-SWCNT and 72 

increases as a function of treatment time, confirming the tensiometry and XPS findings. If we 73 

assume that the D/G ratio is assigned strictly to presence of functionalities producing structural 74 

defect sites, the Raman results are also in agreement with the TEM observations (longer treatment 75 

leads to a thicker, amorphous carbon coating – from experimental treatment 1 (0 min) to 76 

experimental treatment 9 (60 min) to experimental treatment 11 (120 min) to experimental treatment 77 

12 (180 min)) [10]. In the case of 2h treatments, two different molar ratios, namely 0.12 and 2, were 78 

evaluated (Experiments 11 and 21). The higher molar ratio (Experimental treatment 21) leads to 79 

higher D/G ratio, even higher than that of the long treatment time at low ratio (Experimental 80 

treatment 12). This could be explained by the fact that increasing the H2/CO molar ratio leads to an 81 
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organic film with a higher amount of saturated carbon (with oxygen carried away, likely in the form 82 

of water). 83 

 84 

Table 3. D/G band ratio of SWCNTs before and after treatment at different time obtained by Raman spectra 85 

Samples Related Experimental Treatment Time (h) D/G Bond Ratio 
P-SWCNT 1 - 0.29 
S-T-SWCNT 9 1 0.34 
S-T-SWCNT 11 2 0.36 
S-T-SWCNT 12 1 0.43 
S-T-SWCNT 21 2 0.58 

 86 

 87 

3.4. Treatment Homogeneity and Dispersibility of SWCNTs 88 

 89 

 Homogeneous treatment of SWCNT buckypapers will be an important factor in many 90 

applications, including polymer nanocomposites or sensors, in which unfunctionalizaed areas may 91 

deteriorate mechanical and electrical properties and overshadow the SWCNT’s performance 92 

improvements [78]. We have performed XPS mapping of three typical SWCNT samples to verify 93 

homogeneity of surface coatings (Table 4, experimental treatments 1, 9 and 11) at three different 94 

regions on the samples (the head/position P1, middle/P2 and end/P3). Carbon, oxygen and iron 95 

content is nearly identical at all positions, confirming that the treatment is homogeneous.  96 

 97 

Table 4. XPS mapping results and their experimental conditions 98 

 
Samples 

 
 

Characterization 
O1s C1s Fe2p 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

 
 

Test 1 

1 6.4 6.9 6.6 92.7 92 92 - - - 
9 11 12 11 85.7 84.6 85.3 2.4 2.4 2.5 
11 20.5 20.8 17.8 67.5 66.4 72.4 10.5 11 8.2 

 

Test 2 
9 8 9 7 90 88.4 91.3 0.7 1.1 0.7 
11 19.3 15.4 16.6 70 78.7 75 9 4.6 7.2 

  99 

 100 

However, this homogeneity may not hold over the full thickness of the bucky paper sample 101 

used. Given that many biological assays are conducted SWCNTs in suspension, through-the-102 

thickness heterogeneity may be an issue. To evaluate dispersion, samples exhibiting 103 

superhydrophilic behaviors (Experimental treatment 11) were dispersed in deionized water at a 104 
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concentration of 0.05 g/mL. After sonicating for 60 minutes, the samples were allowed to settle. 105 

Untreated SWCNT samples from areas not reached by the PICVD treatment settled out, while 106 

treated S-T-SWCNTs remained in suspension (Fig. 7A). Sediments were removed through 107 

decantation and the supernatants remained stable for at least 24 h (Fig. 7B). The “supernatant 108 

SWCNTs” are the samples that could be used for cytotoxicity assessments before applying them in 109 

biomedical devices. Furthermore, the treatment resists sterilization by immersion of the sample 110 

container in a boiling water bath for 30 min (variation in CA <5° before and after boiling, data not 111 

reported). 112 

Beyond sterilization in suspension, the S-T-SWCNTs exhibited exceptional stability, 113 

hydrophobic samples (from experimental treatment 8) remained at 151r2q after 7 days (ambient 114 

conditions), while hydrophilic samples (from experimental treatments 11 and 12) increased to 7r4q. 115 

This so-called “hydrophobic recovery” of the hydrophilic-treated sample is a well-documented 116 

ageing phenomenon, dependent on absorption of contaminations, reorientation and reconstruction of 117 

dangling groups on the surface [13, 46]. However, this phenomenon can be significantly reduced in 118 

cross-linking modified surfaces [79]. These dispersion assays demonstrate the change in wettability 119 

of individual S-T-SWCNT; dispersion into a wide variety of solvents is the focus of on-going work. 120 

 121 
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A B
A 

Fig. 7. A) Dispersion of T-SWCNTs in deionized water after 24h, B) Well dispersion of T-SWCNTs under vacuum in 
deionized water upon treatment. 

A B 
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4. Conclusions 135 
 136 

 In this study, we compared treatment of SWCNTs by ozone/UV and syngas/PICVD. The 137 

main objective of this project was to functionalize SWCNTs with various surface energies ranging 138 

from superhydrophilic to superhydrophobic. Although treatment of SWCNTs by ozone/UV was 139 

straightforward and superhydrophilic SWCNTs could be obtained in a short time, this method could 140 

not meet the main goal of the project. Syngas/PICVD on the other hand provides an efficient method 141 

to fabricate functionalized SWCNTs with oxygen-containing groups in a full range of surface 142 

energies (ranging from superhydrophilic to superhydrophobic behaviour). Molar ratio of the H2/CO 143 

precursor mix, pressure and treatment time were found to have significant effects during treatment. 144 

The PICVD induced coating on the SWCNTs was chemically characterized and proved to be 145 

homogeneous (on the surface) and exceptionally stable (including being subjected to boiling for 146 

sterilization purposes). This approach is therefore viable as a technique to be used in various 147 

applications such as nanocomposites, aerospace and bio applications, in which various degrees of 148 

functionality (and consequently surface energies) are desirable.  Furthermore, this method will be 149 

applicable to investigate the true effect of surface energy on cytotoxicity, which will be the focus of 150 

subsequent work. 151 
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Supplementary Results  336 

Sample Preparation (Bucky papers) 337 

 338 

 15 mg of purified SWCNTs were dispersed in 10 mL of ethanol by bath sonication for 30 339 

minutes (FS110, Fisher Scientific, power level of 135 W). 400 PL of dispersed SWCNTs were 340 

immediately deposited upon a glass substrate and placed in a vacuum oven for more than 3 h at a 341 

temperature of 100 °C to completely evaporate the ethanol. 342 

 343 

Table S1. Interfacial energy, dispersive and polar components of the liquids used for surface energy computations [80] 344 

Liquids γsl (mN/m) γs
d (mN/m) γs

p (mN/m) 

Deionized water 73r1 22r1 51 

n-hexadecane 26r1 26r1 0r1 

 345 

 346 

 347 
Fig. S1. Survey peaks of S-T-SWCNT after treatment by PICVD 348 
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 350 
Fig. S2. High resolution XPS spectra of SWCNTs 351 
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Fig. S3. A) Overlay of C1s XPS spectra, Blue line: ozone/UV treated for 30min, Violet line: ozone/UV SWCNTs treated 
for 60 min, Red line: P-SWCNTs, Green line: ozone/UV treated for 75 min, Inset: Evolution of survey XPS spectra for 
ozone/UV SWCNTs in different time (0, 30, 60 and 75 min). Error bars show standard deviation of three measurements.  
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Table S2. Blank experiments done based on glass substrates  371 

 
Conditions 

Experimental conditions 
Pressure 

(kPa) 
Position 

(cm) 
Treatment Time 

(min) 
UV Flow 

(ml/min) 

Glass n/a n/a n/a n/a n/a 

CO+H2+H2O2 0 50 120 Yes 350 
CO+H2 0 50 120 Yes 350 
CO+H2O2+UV 0 50 120 Yes 350 

H2+H2O2+UV 0 50 120 Yes 350 
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Fig. S4. High resolution spectra of A: C1s for glass (bare); B: O1s for glass (bare); C: C1s for glass treated with 
CO+H2+H2O2; D: O1s for glass treated with CO+H2+H2O2; E: C1s for glass treated with CO+H2; F: O1s for glass treated 
with CO+H2; G: C1s for glass treated with CO+H2O2; H: O1s for glass treated with CO+H2O2; I: C1s for glass treated with 
H2+H2O2; J: O1s for glass treated with H2+H2O2. 
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Fig. S5. Wide regions of Raman spectra for the SWCNT materials Light Blue: P-SWCNTs, Violet: T-SWCNTs after 1h 
and molar ratio of 0.12, Green: T-SWCNTs after 2h and molar ratio of 0.12, Blue: T-SWCNTs after 3h and molar ratio 
of 0.12, Red: T-SWCNTs after 2h and molar ratio of 2.   
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