15 research outputs found

    Barcoding Techniques Help Tracking the Evolutionary History of the Introduced Species Pennaria disticha (Hydrozoa, Cnidaria)

    Get PDF
    The Christmas tree hydroid Pennaria disticha is listed as one of the most common introduced species in Hawaii. Firstly reported in Kaneohe Bay (Oahu) in 1928, it is now established throughout the entire archipelago, including the Northwestern Hawaiian Islands, a U.S. National Monument and World Heritage site. The Hawaiian population of P. disticha has also been reported as being the source of further introductions to Palmyra Atoll in the U.S. Line Islands. Using a phylogenetic hypothesis based on a 611 base pair fragment of the mitochondrial 16S barcoding gene, we demonstrate that P. disticha is a complex of cryptic species, rather than one species with cosmopolitan distribution. We also show that in Hawaii there are three species of Pennaria, rather than one introduced species. Two of these species share haplotypes with specimens from distant locations such as Florida and Panama and may have been introduced, possibly from the Atlantic Ocean. A third species could either represent a lineage with nearly cosmopolitan distribution, or another introduced species. Our dataset refutes the widely accepted idea that only one lineage of P. disticha is present in Hawaii. On the contrary, P. disticha in Hawaii may be the outcome of multiple independent introductions of several morphologically undistinguishable cryptic lineages. Our results uncover an unsuspected complexity within the very common hydroid P. disticha, and highlight the need for routine use of molecular tools, such as DNA barcoding, to improve the identification and recognition of non-indigenous species

    Spatial variation and antecedent sea surface temperature conditions influence Hawaiian intertidal community structure

    Get PDF
    Global sea surface temperatures (SSTs) are increasing, and in Hawaiʻi, rates of ocean warming are projected to double by the end of the 21st century. However, current nearshore warming trends and their possible impacts on intertidal communities are not well understood. This study represents the first investigation into the possible effects of rising SST on intertidal algal and invertebrate communities across the Main Hawaiian Islands (MHI). By utilizing citizen-science data coupled with high-resolution, daily SST satellite measurements from 12 intertidal sites across the MHI from 2004–2019, the response of intertidal algal and invertebrate abundance and community diversity to changes in SST was investigated across multiple spatial scales. Results show high rates of SST warming (0.40°C Decade-1) over this study’s timeframe, similar to predicted rates of warming for Hawaiʻi by the end of the 21st century. Changes in abundance and diversity in response to SST were variable among intertidal sites, but differences in antecedent SST among intertidal sites were significantly associated with community dissimilarity. In addition, a statistically significant positive relationship was found between SST and Simpson’s diversity index, and a significant relationship was also found between SST and the abundance of six dominant taxa. For five of these six dominant taxa, antecedent SSTs over the 6–12 months preceding sampling were the most influential for describing changes to abundance. The increase in community diversity in response to higher SSTs was best explained by temperatures in the 10 months preceding sampling, and the resultant decreased abundance of dominant turf algae. These results highlight rapidly warming nearshore SSTs in Hawaiʻi and the longer-term effects of antecedent SSTs as significant drivers of change within Hawaiian intertidal communities. Therefore, we suggest that future research and management should consider the possibility of lagging effects of antecedent SST on intertidal communities in Hawaiʻi and elsewhere

    Defining Boundaries for Ecosystem-Based Management: A Multispecies Case Study of Marine Connectivity across the Hawaiian Archipelago

    Get PDF
    Determining the geographic scale at which to apply ecosystem-based management (EBM) has proven to be an obstacle for many marine conservation programs. Generalizations based on geographic proximity, taxonomy, or life history characteristics provide little predictive power in determining overall patterns of connectivity, and therefore offer little in terms of delineating boundaries for marine spatial management areas. Here, we provide a case study of 27 taxonomically and ecologically diverse species (including reef fishes, marine mammals, gastropods, echinoderms, cnidarians, crustaceans, and an elasmobranch) that reveal four concordant barriers to dispersal within the Hawaiian Archipelago which are not detected in single-species exemplar studies. We contend that this multispecies approach to determine concordant patterns of connectivity is an objective and logical way in which to define the minimum number of management units and that EBM in the Hawaiian Archipelago requires at least five spatially managed regions

    Structure of an epiphytic hydroid community on Cystoseira at two sites of different wave exposure

    Get PDF
    Epiphytism is a strategy by which opportunistic species such as hydroids, escape the intense levels of competition in marine hard bottom communities. Species of the macroalgae Cystoseira have a seasonal turnover of the frond, and we hypothesise that epiphytic hydroids colonising such an unstable substrate might show some degree of specialisation. Here the first systematic study on hydroid-Cystoseira communities is presented. In particular, the seasonal and spatial distribution of epiphytic hydroids on three species of Cystoseira at two sites of different wave exposure at Porto Cesareo (Ionian Sea/Italy) were investigated. Thirty-two hydroid species were recorded which are well known from other substrates and thus are not specific to Cystoseira; dominant species were all thecates. The influence of biological factors such as competition and the structure and abundance of the host, seem to have little influence on the hydroid community. The factors of greatest influence were mostly abiotic: sedimentation rate, nutrient levels, temperature and most especially water movement. The importance of water movement was evident in the higher colonisation of algal stems, higher hydroid frequency, larger colonies, reduced colony height, species composition, and distribution on the stems at the wave-exposed site.No disponibl

    Maximum Likelihood phylogenetic hypothesis based on a 611bp fragment of the mitochondria gene 16S.

    No full text
    <p>Garli and RaxML runs produced the same topology. Five clades (1, 2A, 2B, 2C, 2D) are indicated by color-coded blocks. Bootstrap values and posterior probabilities are indicated at each node in the following order: Garli/RaxML/MrBayes (bootstrap values and posterior probabilities <50 not shown). See text for details on analyses.</p
    corecore