1,197 research outputs found

    The Touch

    Full text link

    Jasmonic acid methyl ester induces xylogenesis and modulates auxin-induced xylary cell identity with NO Involvement

    Get PDF
    In Arabidopsis basal hypocotyls of dark-grown seedlings, xylary cells may form from the pericycle as an alternative to adventitious roots. Several hormones may induce xylogenesis, as Jasmonic acid (JA), as well as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) auxins, which also affect xylary identity. Studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC), also demonstrate ET involvement in IBA-induced ectopic metaxylem. Moreover, nitric oxide (NO), produced after IBA/IAA-treatments, may affect JA signalling and interact positively/negatively with ET. To date, NO-involvement in ET/JA-mediated xylogenesis has never been investigated. To study this, and unravel JA-effects on xylary identity, xylogenesis was investigated in hypocotyls of seedlings treated with JA methyl-ester (JAMe) with/without ACC, IBA, IAA. Wild-type (wt) and ein3eil1 responses to hormonal treatments were compared, and the NO signal was quantified and its role evaluated by using NO-donors/scavengers. Ectopic-protoxylem increased in the wt only after treatment with JAMe(10 ÎĽM), whereas in ein3eil1 with any JAMe concentration. NO was detected in cells leading to either xylogenesis or adventitious rooting, and increased after treatment with JAMe(10 ÎĽM) combined or not with IBA(10 ÎĽM). Xylary identity changed when JAMe was applied with each auxin. Altogether, the results show that xylogenesis is induced by JA and NO positively regulates this process. In addition, NO also negatively interacts with ET-signalling and modulates auxin-induced xylary identity

    Nitric oxide alleviates cadmium- but not arsenic-induced damages in rice roots

    Get PDF
    Nitric oxide (NO) has signalling roles in plant stress responses. Cadmium (Cd) and arsenic (As) soil pollutants alter plant development, mainly the root-system, by increasing NO-content, triggering reactive oxygen species (ROS), and forming peroxynitrite by NO-reaction with the superoxide anion. Interactions of NO with ROS and peroxynitrite seem important for plant tolerance to heavy metal(oid)s, but the mechanisms underlying this process remain unclear. Our goal was to investigate NO-involvement in rice (Oryza sativa L.) root-system after exposure to Cd or As, to highlight possible differences in NO-behaviour between the two pollutants. To the aim, morpho-histological, chemical and epifluorescence analyses were carried out on roots of different origin in the root-system, under exposure to Cd or As, combined or not with sodium nitroprusside (SNP), a NO-donor compound. Results show that increased intracellular NO levels alleviate the root-system alterations induced by Cd, i.e., inhibition of adventitious root elongation and lateral root formation, increment in lignin deposition in the sclerenchyma/endodermis cell-walls, but, even if reducing As-induced endodermis lignification, do not recover the majority of the As-damages, i.e., enhancement of AR-elongation, reduction of LR-formation, anomalous tissue-proliferation. However, NO decreases both Cd and As uptake, without affecting the pollutants translocation-capability from roots to shoots. Moreover, NO reduces the Cd-induced, but not the As-induced, ROS levels by triggering peroxynitrite production. Altogether, results highlight a different behaviour of NO in modulating rice root-system response to the toxicity of the heavy metal Cd and the metalloid As, which depends by the NO-interaction with the specific pollutant

    A test of motion-sensitive cameras to index ungulate densities: group size matters

    Get PDF
    The use of species detection rates gathered from motion-sensitive cameras as relative abundance indices (RAIs) could be a cost-effective tool to monitor wildlife populations; however, validations based on comparisons with reference methods are necessary. We considered 3 ungulates, wild boar (Sus scrofa), roe deer (Capreolus capreolus), and fallow deer (Dama dama), and compared 2 different RAIs with independent indices of density obtained through feces counts across 3 summers (2019-2021) in a protected area of central Italy. We estimated the number of detections per day (RAI(events)), and the number of individuals per day (RAI(individuals)) from remote camera videos. Both indices were correlated with density estimates, yet only RAI(individuals) correctly ranked interspecific densities. Values of RAI(events) for the most abundant and gregarious ungulate (i.e., wild boar) were biased low and were lower than those of fallow deer. The uncertainty of RAIs was acceptable for the 2 most abundant study species (CVs <= 25%) but was greater for roe deer. At the intra-specific level, density estimates and RAIs showed comparable but slight inter-annual variation. Our results support the use of RAIs derived from motion-sensitive cameras as a promising and cost-effective tool to monitor ungulate populations, and researchers should incorporate group size into monitoring. We advocate the necessity of field tests based on comparison with locally reliable reference methods to validate the use of motion-sensitive cameras

    Harmonization of design-based mapping for spatial populations

    Get PDF
    The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real population

    Harmonization of design-based mapping for spatial populations

    Get PDF
    The mapping of a survey variable throughout a continuum or for finite populations of units is usually performed from a model-dependent perspective. Nevertheless, when a sample of locations/units is selected by a probabilistic sampling scheme, the complex task of modelling can be avoided by using the inverse distance weighting interpolator and deriving the properties of maps in a design-based perspective. Conditions ensuring consistency of maps can be derived mainly based on some obvious assumptions about the pattern of the survey variable throughout the study region as well from the feature of the sampling scheme adopted to select locations/units. Nevertheless, in a design-based setting the totals of the survey variable for a set of domains partitioning the study region are commonly estimated by traditional estimators such as the Horvitz–Thompson estimator in the case of finite populations or the Monte-Carlo estimator in the case of continuous populations or by related estimators exploiting the information of auxiliary variables. That necessarily gives rise to different total estimates with respect to those achieved from the resulting maps as the sum of the interpolated values within domains. To obtain non-discrepant results, a harmonization of maps is here suggested, in such a way that the resulting totals arising from maps coincide with those achieved by traditional estimation. The capacity of the harmonization procedure to maintain consistency is argued theoretically and checked by a simulation study performed on some real populations

    Design-based mapping for finite populations of marked points

    Get PDF
    The estimation of marks for a finite population of points scattered onto a study region is considered when a sample of these points is selected by a probabilistic sampling scheme. At each point, the mark is estimated by means of an inverse distance weighting interpolator. The design-based asymptotic properties of the resulting maps are derived when the study area remains fixed, a sequence of nested populations with increasing size is considered and samples of increasing size are selected. Conditions ensuring design-based asymptotic unbiasedness and consistency are given. They essentially require that marks are the values of a pointwise or uniformly continuous deterministic function, the enlargement of the populations is rather regular and the sequence of sampling designs ensures an asymptotic spatial balance. A computationally simple mean squared error estimator is proposed. A simulation study is performed to assess the theoretical results on artificial populations. Finally, an application for mapping the values of the height of trees in a forest stand located in North Italy is reported

    Cadmium and arsenic affect root development in Oryza sativa L. negatively interacting with auxin

    Get PDF
    Cadmium (Cd) and arsenic (As), non essential, but toxic, elements for animals and plants are frequently present in paddy fields. Oryza sativa L., a staple food for at least the half of world population, easily absorbs As and Cd by the root, and in this organ the pollutants evoke consistent damages, reducing/modifying the root system. Auxins are key hormones in regulating all developmental processes, including root organogenesis. Moreover, plants respond to environmental stresses, such as those caused by Cd and As, by changing levels and distribution of endogenous phytohormones. Even though the effects of Cd and As on the roots have been investigated in some species, it remains necessary to deepen the knowledge about the cross-talk between these toxic elements and auxin during root formation and development, in particular in agronomically important plants, such as rice. Hence, the research goal was to investigate the interactions between Cd and As, alone or combined, and auxin during the development of rice roots. To reach the aim, morphological, histological and histochemical analyses were carried out on seedlings, exposed or not to Cd and/or As, belonging to the wild type and transgenic lines useful for monitoring indole-3-acetic acid (IAA) localization, i.e., OsDR5:GUS, and IAA cellular influx and efflux, i.e., OsAUX1:GUS and OsPIN5b:GUS. Moreover, the transcript levels of the YUCCA2 and ASA2, IAA biosynthetic genes were also monitored in Cd and/or As exposed wild type seedlings. The results highlight that As and Cd affect cyto-histology and morphology of the roots. In particular, they alter the lateral root primordia organization and development with negative consequences on root system architecture. This is due to a disturbance of IAA biosynthesis and transport, as indicated by the altered expression of both ASA2 and YUCCA2 biosynthetic genes, and AUX1 and PIN5b transporter genes

    Design-based methodological advances to support national forest inventories: a review of recent proposals

    Full text link
    • …
    corecore