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Abstract: The estimation of marks for a finite population of points scat-
tered onto a study region is considered when a sample of these points is
selected by a probabilistic sampling scheme. At each point, the mark is esti-
mated by means of an inverse distance weighting interpolator. The design-
based asymptotic properties of the resulting maps are derived when the
study area remains fixed, a sequence of nested populations with increas-
ing size is considered and samples of increasing size are selected. Condi-
tions ensuring design-based asymptotic unbiasedness and consistency are
given. They essentially require that marks are the values of a pointwise or
uniformly continuous deterministic function, the enlargement of the popu-
lations is rather regular and the sequence of sampling designs ensures an
asymptotic spatial balance. A computationally simple mean squared error
estimator is proposed. A simulation study is performed to assess the theo-
retical results on artificial populations. Finally, an application for mapping
the values of the height of trees in a forest stand located in North Italy is
reported.
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1. Introduction

Finite populations of marked points describe the positions and the characteris-
tics of a finite collection of units spread in a study region. As typical examples,
units/points are towns in a geographic region and marks are their population
sizes ([3]); in forest studies, units/points are trees in a forest stand and marks are
tree heights or stem diameters (e.g. [9]; [21]) or tree crown dimensions delineated
from high spatial resolution remotely sensed imagery (e.g. [4]); in natural haz-
ard studies, points are earthquake epicenters and marks are their corresponding
magnitudes (e.g. [14]).

In most cases, finite populations of marked points are analysed in a model-
based framework, supposing that they are outcomes of marked point processes
in the plane. Model construction for marked point processes is a quite complex
task involving a complex sequence of assumptions. In the simplest case, when
marks are supposed to be independently and identically distributed and inde-
pendent of point locations, the model is referred to as independently marked
(or randomly labelled) point process. This model consists of two independent
random components: a point process and a sequence of i.i.d. marks. In more
realistic cases, marks are supposed to be generated by a random field, i.e. they
may be dependent. These models were introduced by [18] and subsequently
adopted by [20] to analyse observed gauge measurements for rainfalls. They are
referred to as geostatistical (or external) marking or random field models. How-
ever, assuming independence between marks and locations may be unrealistic,
especially in presence of interactions between points, as obvious in the biological
context of competition. More realistically, marks and points should be supposed
to be dependent giving rise to models referred to as non-geostatistical marking.
Models assuming a close relationship between point density and marks are the
density-dependent marked Cox processes ([19]).
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We do not want to address the huge literature regarding marked point pro-
cesses and model-based inference on finite populations of marked points (see [16]
for a comprehensive review on this topic). Rather, we attempt to reconstruct
finite populations of marked points in a design-based framework, i.e. treating
points and marks as fixed characteristics and deriving the properties of the in-
terpolated marks on the basis of the sampling scheme adopted to select a sample
of points on which marks are recorded. As pointed out by [22], the main attrac-
tion of the design-based approach is that “Design-based inference is objective,
nobody can challenge that the sample was really selected according to the given
sampling design. The probability distribution associated with the design is real,
not modelled or assumed”.

However, when any assumption about the marked point process generating
the population and marks is avoided and points and marks are considered as
fixed attributes, then uncertainty only stems from the sampling scheme and
making maps becomes challenging. Indeed, when estimating the mark of a single
point, either the point is sampled and there is no need for estimation, or the point
is unsampled so that we have no information about it to perform estimation.
In these cases the use of an assisting model to estimate unsampled values is
unavoidable.

Recently, [2] (see also [27]) exploit the very simple Tobler’s first law of ge-
ography as assisting model, i.e. units that are close in space tend to be more
similar than units that are far apart ([26]). Accordingly, the authors adopt the
so-called inverse distance weighting (IDW) interpolator in which the marks at
the not sampled points are estimated by a weighted sum of the sampled marks
with weights inversely decreasing with distances to the point under estimation.

However, in a design-based framework, the IDW estimator - as any other
possible model-assisted estimator - is biased and there is no way to achieve
general conclusions about its properties. Actually, from a design-based point
of view, the sole way to render statistically sound the IDW estimation is to
prove some sort of design-based asymptotic unbiasedness and consistency. The
main purpose of this paper is to determine the conditions ensuring unbiasedness
and consistency of the IDW interpolator as the study area remains fixed and
population and sample sizes approach infinity.

The paper is organized as follows. Section 2 provides the statement of the
problem. In Section 3 the asymptotic framework is delineated and conditions en-
suring asymptotic unbiasedness and consistency are derived. In Section 4 some
sampling schemes are considered, some of them of wide applications in forest and
environmental surveys, under which unbiasedness and consistency are achieved.
A computationally simple, asymptotically conservative estimator of the mean
square error of the IDW interpolator is proposed in Section 5. The theoretical
results are assessed by a simulation study performed on artificial populations
of marked points in Section 6. An application of the method on a population
of trees located in North Italy is reported in Section 7. Concluding remarks are
given in Section 8. Proofs of the main results of Sections 3, 4 and 5 are reported
in the Appendix.
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2. Statement of the problem

Consider a study region A which is supposed to be a connected and compact
set of R2. Moreover, suppose a population of N points p1, . . . , pN scattered onto
A. In the following, with a slight abuse of notation, U will denote both the set
of the N points and the set of indexes {1, . . . , N} identifying them. For each
pair of points h > j ∈ U denote by djh = ‖pj − ph‖, where ‖‖ denotes a norm
in R

2. Moreover, for each point j, let yj be the amount of the survey variable
Y , usually referred to as the mark of unit j.

We are interested in reconstructing the marked population, i.e. in estimating
the value yj for each j ∈ U by using the values recorded in a sample S of n points
selected from U by means of a sampling scheme inducing invariably positive first-
order inclusion probabilities πj and second-order inclusion probabilities πjh (h >
j ∈ U).

Exploiting the law of geography by [26] in a model-assisted framework, [2]
propose to estimate the yjs by means of IDW interpolator

ŷj = Zjyj + (1− Zj)
∑
i∈U

wijyi (2.1)

where Zj is the random variable equal to 1 if j ∈ S and 0 otherwise,

wij =
Ziφ(dij)∑
l∈U Zlφ(dlj)

is the weight attached to the mark of unit i to estimate the mark of unit j
and φ : [0,∞) → R

+ is a not increasing function on ]0,∞), with φ(0) = 0 and
limd→0+ φ(d) = ∞. From (2.1) it follows that ŷj is equal to the true value yj
when j ∈ S. As in any design-based approach to inference, the sole random
variables involved in (2.1) are the Zjs that describe the sampling outcome.

The design-based expectation and variance of (2.1) (see [2]) are

E(ŷj) = πjyj +
∑
i∈U

E{(1− Zj)wij}yi

V (ŷj) = πjy
2
j +

∑
h,i∈U

E{(1− Zj)wijwhj}yiyh − {E(ŷj)}2.

Because no theoretical result about bias and precison is available, investigations
are needed to derive conditions under which design-based asymptotic unbiased-
ness and consistency hold.

3. Asymptotic results

As is customary in the finite population asymptotic framework (e.g. [22], Sec-
tion 5.3) let V = {p1, p2, . . . } be an infinite sequence of points onto A and
y(V) = {y1, y2, . . . } be the corresponding sequence of marks. A sequence {Uk}
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of populations is considered where U1 consists of the first N1 points from V , U2

consists of the first N2 points from V with N2 > N1, and so on, in such a way
that {Uk} turns out to be a sequence of nested populations of increasing sizes.
Finally suppose a sequence of designs to select a sample Sk of size nk from Uk.

For each k and for each pair h > j ∈ Uk denote by π
(k)
j and π

(k)
jh the first- and

second-order inclusion probabilities induced by the kth design and denote by

Z
(k)
j the indicator variable which equals 1 if unit j is selected from Uk and 0

otherwise.
In this framework, for any natural number j let k(j) be the population index

such that j ∈ Uk for any k ≥ k(j). For any population Uk, with k ≥ k(j),
consider the IDW interpolator of yj . From equation (2.1) it follows that

ŷ
(k)
j = Z

(k)
j yj + (1− Z

(k)
j )

∑
i∈Uk

w
(k)
ij yi

where

w
(k)
ij =

Z
(k)
i φ(dij)∑

l∈Uk
Z

(k)
l φ(dlj)

.

The goal is to determine the asymptotic design-based behaviour of the IDW
interpolator as k → ∞, i.e. as the population of points onto A becomes larger
and larger.

The IDW interpolator is defined to be pointwise design consistent at pj if

|ŷ(k)j − yj | converges in probability to 0, i.e.

p lim
k→∞

|ŷ(k)j − yj | = 0. (3.1)

Moreover, the IDW interpolator is defined to be uniformly design consistent

with respect to {Uk} if supj∈Uk
|ŷ(k)j − yj | converges in probability to 0, that is

p lim
k→∞

sup
j∈Uk

|ŷ(k)j − yj | = 0. (3.2)

3.1. Some notations

For any δ > 0 denote by

Bj(δ) = {p : ||p− pj || ≤ δ}

the closed disc of radius δ centered at pj , henceforth referred to as the δ-disc of
point j and, when k ≥ k(j), denote by

B
(k)
j (δ) = {i : i ∈ Uk, pi ∈ Bj(δ)}

the set of points in Uk that are in the δ-disc of point j, henceforth referred to
as the δ-neighbors of point j in Uk. Moreover, denote by

Δ
(k)
j (δ) = sup

i∈B
(k)
j (δ)

|yi − yj |
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the maximum difference between the mark of point j and those of its δ-neighbors
in Uk and by

Z
(k)
j (δ) =

∑
i∈B

(k)
j (δ)

Z
(k)
i

the number of sampled points among the δ-neighbors of point j.
It should be noticed that

sup
k≥k(j)

Δ
(k)
j (δ) = sup

pi∈Bj(δ)

|yi − yj |

in such a way that y is continuous at pj if and only if

lim
δ→0+

sup
k≥k(j)

Δ
(k)
j (δ) = 0. (3.3)

Moreover, denoting by

Δ(δ) = sup
k

max
j∈Uk

Δ
(k)
j (δ)

then y is continuous on V if and only if

lim
δ→0+

Δ(δ) = 0. (3.4)

3.2. The basic assumptions

In order to achieve the asymptotic design-based properties of (2.1) we consider
that the function y, defined on V by yj = y(pj) for any natural number j, is
valued in [0, L]. The assumption seems reasonable because, in real world, the
values of a survey variable are usually non negative, and even if high, unlikely
attain infinity. However, even if yj takes negative values, assuming |yj | ≤ L/2 all
the following results still hold. Thus, in the following, it will not be restrictive

to suppose yj valued in [0, L]. Moreover, this assumption entails that ŷ
(k)
j is

bounded by L, in such a way that pointwise or uniform design consistency
of the IDW interpolator also entails pointwise or uniform design asymptotic
unbiasedness.

For achieving design consistency of (2.1) it is necessary to assume the exis-
tence of a real number v > 0 such that for each k = 1, 2, . . .

V ⊂
⋃

j∈Uk

Bj(vN
− 1

2

k ). (3.5)

The assumption is crucial and entails a sort of regularity in the enlargements of
the populations of the sequence, ensuring that for each population Uk the Nk

locations are evenly spread throughout V , in such a way that for an adequate
radius the discs centered at these points completely cover V . In more practical
words, assumptions (3.5) ensures the absence of isolated points that would be
likely to be too far from the sampled points.
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If assumption (3.5) holds, then it is reasonable to further require that for a
pj and any arbitrary ε > 0 there exist an integer k0 and a real number v > 0
such that

Pr{Z(k)
j (vN

− 1
2

k ) = 0} < ε ∀ k > k0. (3.6)

In other words, assumption (3.6) ensures that for a sufficiently large k, the

vN
− 1

2

k -disc of pj definitively contains sampled points with high probability. A
condition more restrictive than (3.6) is obtained if for any ε > 0 there exists an
integer k0 such that

Pr{min
j∈Uk

Z
(k)
j (vN

− 1
2

k ) = 0} < ε ∀ k > k0. (3.7)

Both conditions concern the design sequence, ensuring a spatial balance asymp-
totically achieved by the sampling scheme, i.e. for a sufficiently large k the
scheme is able to evenly spread sampled units in such a way that any unit is
likely to have neighboring sampled units.

Finally, regarding the distance function φ, we assume that

lim
d→0+

d2φ(d) = ∞. (3.8)

If φ(d) = d−β , then (3.8) is verified for any β > 2 and if φ(d) = g(d)d−2 then
(3.8) holds when g is a positive function with limd→0+ g(d) = ∞. It should be
noticed that actually (3.8) does not constitute an assumption because it can be
always ensured by the user.

3.3. Design consistency results

The following result is essential for subsequently proving both pointwise and
uniform design consistency (see Section A.1 for the proof).

Lemma. For any α, δ, v > 0 and for any j ∈ Uk, with k ≥ k(j) it holds that

E{(ŷ(k)j − yj)
2} ≤ 2Δ

(k)
j (δ)2 + 2L2

[
Pr{Z(k)

j (vN−α
k ) = 0}

+
φ2(δ)n2

k

φ2(vN−α
k )

Pr{Z(k)
j (vN−α

k ) > 0}
] (3.9)

and

E{max
j∈Uk

(ŷ
(k)
j − yj)

2} ≤ 2max
j∈Uk

Δ
(k)
j (δ)2 + 2L2

[
Pr{min

j∈Uk

Z
(k)
j (vN−α

k ) = 0}

+
φ2(δ)n2

k

φ2(vN−α
k )

Pr{min
j∈Uk

Z
(k)
j (vN−α

k ) > 0}
]
.

(3.10)

Exploiting the previous Lemma, the further result establishes sufficient con-
ditions for pointwise and uniform design consistency (see Section A.2 for the
proof).
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Result 1. If y is continuous at pj , conditions (3.6) and (3.8) ensure pointwise
design consistency at pj . If y is continuous on V, conditions (3.7) and (3.8)
ensure uniform design consistency with respect to {Uk}.

Further results on the consistency convergence rate of the IDW interpolator
can be achieved if further assumptions are introduced about y and about the
balancing features of the sampling scheme.

In particular, suppose that y is a Lipschitz function on V , i.e. there exists a
constant C such that

|yi − yj | ≤ C||pi − pj ||, ∀ pi, pj ∈ V (3.11)

and also suppose that for an integer j there exists a real number cj > 0 such
that, for any k > k (j),

Pr{Z(k)
j (υN

−1/2
k ) = 0} ≤ cjv

−2 when 0 < v ≤ N
1/2
k diam(A) (3.12)

where diam(A) is the diameter of A. Condition (3.11) entails a limitation in
how fast y can change on V . Regarding condition (3.12) it is at once apparent
that it implies condition (3.6). Therefore condition (3.12) concerns the design
sequence, requiring an enhanced balancing power of the sampling scheme to
spread sampled points onto V , in such a way that the probability of having no
point sampled within the disc centred at pj decreases at least proportionally to
the disc size. Under these two conditions the following result holds (see Section
A.3 for the proof).

Result 2. If conditions (3.11) and (3.12) hold, and if φ (d) = d−β with β > 2,
then

E{(ŷ(k)j − yj)
2} ≤ Hn

2−β
2β+1

k ∀ k > k(j)

where H is a constant depending on β,C, cj and L.

From Result 2, under conditions (3.11) and (3.12), design consistency is en-

sured with a O(n
2−β
2β+1

k ) convergence rate, so that the use of large β values in the
distance function seems advisable.

4. Asymptotic results under some spatial schemes

When sampling populations of points scattered onto a study region, a wide vari-
ety of sampling schemes is available. The most straightforward scheme is simple
random sampling without replacement (SRSWOR). Despite its simplicity, SR-
SWOR may lead to uneven surveying of the study region.

In order to avoid this drawback, the achievement of spatially balanced sam-
ples, i.e. samples in which the selected points are well spread throughout the
population, has been the main target for a long time. Spatial balance can be
straightforwardly performed by partitioning the study area into strata and then
selecting points within strata by SRSWOR, where the number of points selected
within each stratum is proportional to the stratum size (proportional allocation).
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A more effective spatial balance can be obtained by means of quite com-
plex schemes such as the generalized random tessellation stratified sampling
by [24], the draw-by-draw sampling that excludes the selection of contiguous
units proposed by Fattorini in [5] and [6], the local pivotal method of the first
and second type by [11], the spatially correlated Poisson sampling by [10] and
the doubly balanced spatial sampling by [12]. The last one seems the most ef-
fective, joining the spatial balance provided by the local pivotal methods with
further spatial properties. For example, if points coordinates are used as two
balancing variables, the scheme not only provides samples of points well spread
onto the region, but samples and the population have approximately the same
barycenters. In this sense, the sampling is doubly spatially balanced.

It should be noticed that the use of these schemes, from the most straightfor-
ward SRSWOR to the more complex spatially balanced ones, necessitates the
list of points in the population together with their locations. Therefore, these
schemes cannot be adopted in forest and environmental surveys where we have
to sample populations of units such as trees or shrubs scattered over large ar-
eas because list and locations of these units are prohibitive to achieve in terms
of time and resources. In most cases, natural populations are sampled without
knowing the list, by means of plots or transects located on the study area in
accordance with probabilistic designs (e.g. [13], Chapters 7, 8, 9). Obviously,
in these cases, in absence of list and locations, even the population mapping is
precluded.

On the other hand, these problems rarely arise in economic and social studies
regarding towns or firms, whose list and locations are readily available from
administrative sources. Probably, the unique relevant case in which the mapping
of natural populations becomes possible is under a sampling scheme referred to
as 3P sampling from the acronym of probability proportional to prediction. The
scheme is a variation of Poisson sampling and has been widely used mainly
in North America to estimate wood volume available for sale or other forest
attributes such as tree height and basal area from small forest stands, usually
of no more than 10− 15 hectares in size. The properties and applications of 3P
sampling have been studied extensively in major forest measurement texts, and
it has been proven to be very effective (e.g. [1], [15], [23], [28]).

Under 3P sampling, all the units of the population are visited by a crew
of experts (and hence mapped), a prediction xj for the value of the survey
variable is given by the experts for each unit j of the population and units
are independently included in the sample with probabilities πj = xj/M where
M must be large enough to ensure that πj ≤ 1 for each j ([13]). Since when
3P sampling is implemented all the units locations are recorded, marks can be
estimated for the unsampled units.

Unfortunately, condition (3.7), necessary for uniform design consistency, can-
not be proven for most schemes. Even condition (3.6), necessary for pointwise
design consistency, may be difficult to prove. Therefore, for proving pointwise
consistency at least, it is useful to give sufficient conditions for (3.6) in terms of
first- and second-order inclusion probabilities, as customary in some consistency
theorems of finite population sampling.
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To this aim we not only suppose condition (3.5) for V , but we further require
that it is regular, i.e. for any pj ∈ V and for any natural number m there exist
a real number u > 0 and an integer k0 such that

Card{B(k)
j (uN

−1/2
k ) ∩ Uk} > m ∀ k > k0. (4.1)

Condition (4.1) ensures that for a sufficiently large k, any population point has
many neighboring points around. The following result states sufficient conditions
for (3.6) (see Section A.4 for the proof).

Result 3. If V is regular and if

inf
k

min
j∈Uk

π
(k)
j > 0, (4.2)

and

lim
k→∞

max
h>j∈Uk

(
π
(k)
jh

π
(k)
j π

(k)
h

− 1)+ = 0 (4.3)

then condition (3.6) holds.

Result 3 establishes conditions for (3.6) quite akin to those required in [17]
for the design consistency of the Horvitz-Thompson estimator of population
totals, i.e. that the design sequence ensures first-order inclusion probabilities
invariably greater than a given threshold and that the second-order inclusion
probabilities approach the product of the corresponding first-order ones as k
increases. Then, Result 3 can be exploited to readily prove pointwise consistency
under SRSWOR, stratified spatial sampling with proportional allocation and 3P
sampling (see Sections A.5 and A.6 for the proofs).

Finally, regarding the above-mentioned complex schemes proposed to gener-
ate spatially balanced samples, owing to their complexity, the second-order in-
clusion probabilities do not admit closed expressions. Therefore condition (4.3)
cannot be adopted to prove their pointwise design consistency. However, their
effectiveness in providing spatial balance (see e.g. [25]) and their superiority
over SRSWOR empirically evidenced by several simulation studies may induce
to presume that pointwise design consistency should also hold for these schemes.

If a further assumption about the spatial pattern of points is introduced, then
it is also possible to give conditions ensuring the convergence rate established
from Result 2 in terms of first and second-order inclusion probabilities. That
can be done by reinforcing the regularity assumption (4.1) supposing that for
an integer j there exists a real number cj > 0 such that

Card{B(k)
j (υN

−1/2
k )∩Uk} ≥ cjv

2 ∀ k > k(j), 0 < v ≤ N
1/2
k diam(A). (4.4)

Obviously condition (4.4) implies (4.1), requiring a tendency of the spatial pat-
tern to aggregate points rapidly around pj , in such a way that the number of
neighbors in a disc tend to increase more quickly than the size of the disc. It is
worth noting that this tendency occurs under clustered spatial patterns, as is
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well evidenced, even if in a model-based framework, by the Ripley K function
(see e.g. [3], Chapter 8).

The following result states sufficient conditions involving inclusion probabil-
ities for ensuring the convergence rate established by Result 2 (see Section A.7
for the proof).

Result 4. If conditions (4.2), (4.3) and (4.4) hold and if

max
h>i∈Uk

(
π
(k)
ih

π
(k)
i π

(k)

h

− 1)+ = 0 (4.5)

then (3.12) holds and, consequently if y is a Lipschitz function on V, Result 2
follows.

Practically speaking, the ability of the design sequence to ensure that the
probability of having no point sampled near a point decreases at least propor-
tionally with the area around the point, as established by condition (3.12), is
ensured by condition (4.4) joined with some quite obvious characteristics of
first- and second-order inclusion probabilities, thus ensuring a convergence rate
of the order established by Result 2. For example, if (4.4) holds, this conver-
gence rate holds under stratified spatial sampling with proportional allocation
(STRSPA), whose inclusion probabilities satisfy conditions (4.2) and (4.5), as
argued in Section A.5.

From these considerations it is apparent that clustered spatial patterns should
represent more favorable situations for spatial interpolation than regular or ran-
dom patterns as well as spatial stratifications are always suitable as a straight-
forward way to achieve balanced samples.

5. Mean squared error estimation

In order to provide an estimator for the mean squared error (MSE) of (2.1), it
should be noted that in practical situations, especially for large areas, the esti-
mation has to be performed for thousands of points. Accordingly any MSE esti-
mator should not be computationally demanding. In this sense, time-consuming
resampling procedures such as bootstrap or jackknife should be avoided.

Owing to Tobler’s law (which has motivated the estimation), the marks of
the sampled points nearest to point j are likely to be a good (known) proxy for
yj . Therefore, a simple estimator for MSE(ŷj) is given by

V̂j = (ŷj − ynear(j))
2 (5.1)

where near(j) is the label of the unit such that near(j) ∈ S, near(j) �= j and∥∥pj − pnear(j)
∥∥ = min

i∈S
i �=j

‖pj − pi‖ .

In order to determine the design-based asymptotic properties of (5.1), we still
adopt the asymptotic framework of Section 3. Accordingly, for any fixed j ∈ Uk

and any population Uk with k ≥ k(j) we refer to MSE(ŷ
(k)
j ) and V̂

(k)
j = (ŷ

(k)
j −
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ỹ
(k)
j )2 where ỹ

(k)
j = ynear(k,j) and near(k, j) is the label of the sampled point

nearest to point j in the k population of the sequence, i.e. near(k, j) ∈ Sk,
near(k, j) �= j and ∥∥pj − pnear(k,j)

∥∥ = min
i∈Sk
i �=j

‖pj − pi‖ .

Under condition (3.6), it is at once apparent that (1 − Z
(k)
j )‖pj − pnear(k,j)‖

converges in probability to 0. Thus, if pj is a continuity point of y, it follows that

lim
k �→∞

E{(yj − ỹ
(k)
j )2} = 0. (5.2)

Moreover, the following result holds (see Section A.8 for the proof).

Result 5. For any pj and any k it holds

MSE(ŷ
(k)
j ) ≤ E(V̂

(k)
j ) + 3L[E{(yj − ỹ

(k)
j )2}]1/2. (5.3)

Result 5 and condition (5.2) jointly prove that V̂
(k)
j can be considered an

asymptotically conservative estimator of MSE(ŷ
(k)
j ) at any continuity point of y.

6. Simulation studies

6.1. Artificial populations

Two functions, referred to as F1 and F2, were considered on the unit square for
generating marks. In particular, for any point p = (p1, p2) of the unit square

F1: y(p) = C1(sin 3p1 sin
2 3p2)

2

F2: y(p) =

{
C2p1p2 min(p1, p2) < 0.5

C2(1 + p1p2) otherwise

where the constants C1, C2 ensured a maximum mark of 10 in both cases. For
any function, three nested populations of N = 1000, 5000 and 10000 points
were located in the unit square in accordance with four spatial patterns referred
to as regular (RE), random (RA), trended (TR) and clustered (CL). All the
populations were generated in such a way to ensure a sort of regularity when
increasing from 1000 to 10000 points in such a way to approach condition (3.5).

The nested RE populations were constructed by generating the first 1000
points completely at random but discarding those having distances smaller than
1000−1/2 to those previously generated, then adding further 4000 points com-
pletely at random but discarding those having distances smaller than 5000−1/2

to those previously generated, and finally adding further 5000 points completely
at random but discarding those having distances smaller than 10000−1/2.

The nested RA populations were constructed by simply generating 10000
points completely at random and then assigning the first 1000 to the first pop-
ulation, the first 5000 to the second population and all of them to the third.
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The nested TR populations were constructed generating 10000 pairs of ran-
dom numbers (u1, u2) uniformly distributed on (0,1), performing the transfor-
mation (1−u2

1, 1−u2
2) and then assigning the first 1000 to the first population,

the first 5000 to the second population and all of them to the third.
The nested CL populations were constructed generating 10 cluster centres

completely at random and then assigning 100 points to each cluster generated
from a spherical normal distribution centred on the cluster centre with variances
0.025, then adding further 400 points to each cluster from the same normal
distribution and finally adding further 500 points to each cluster from the same
distribution. Points falling outside the unit square were discarded and newly
generated.

6.2. Sampling and estimation

For any population arising from the combination of function, spatial pattern and
size N , R = 10000 samples of size n = N/10 were independently selected by
means of SRSWOR, STRSPA and doubly balanced spatial sampling (DBALSS).
STRSPA was performed by previously partitioning the unit square into 16 spa-
tial strata of equal size and then selecting 10% of points within each stratum
by means of SRSWOR. DBALSS was performed by selecting units with equal
first order inclusion probabilities 0.1 in accordance with the algorithm by [12],
balancing the samples with respect to the spatial coordinates. Once the samples
were selected, (2.1) was adopted to estimate the marks for all the points in the
population by using d−β as distance function, with β = 2, 3, 4. Once the mark
estimates were achieved, their MSEs were estimated by means of equation (5.1).

6.3. Performance indicators

At the end of the R simulation runs, the absolute bias (AB)

ABj =
∣∣∣ 1
R

R∑
i=1

ŷji − yj

∣∣∣ j = 1, . . . , N

the root mean squared error (RMSE)

RMSEj =
[ 1
R

R∑
i=1

(ŷji − yj)
2
]1/2

, j = 1, . . . , N

and the absolute bias of the root MSE estimator (ABRMSEE)

ABRMSEEj =
∣∣∣ 1
R

R∑
i=1

V̂
1/2
ji −RMSEj

∣∣∣, j = 1, . . . , N

were computed from the Monte Carlo distributions of the estimates ŷji and

of the RMSE estimates V̂
1/2
ji (j = 1, . . . , N ; i = 1, . . . , R). Tables 1-8 report

the minima, maxima and averages of ABs, RMSEs and ABRMSEEs for any
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Table 1

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F1 and RE, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.00 2.19 0.93 0.29 2.40 1.13 0.00 1.26 0.28
STRSPA 0.00 2.10 0.89 0.21 2.30 1.05 0.00 1.22 0.26
DBALSS 0.00 2.04 0.81 0.14 2.17 0.92 0.00 1.05 0.21

5000 SRSWOR 0.00 1.87 0.68 0.12 2.02 0.78 0.00 0.71 0.12
STRSPA 0.00 1.87 0.68 0.09 2.01 0.77 0.00 0.71 0.12
DBALSS 0.00 1.79 0.62 0.05 1.89 0.67 0.00 0.55 0.09

10000 SRSWOR 0.00 1.71 0.61 0.08 1.87 0.69 0.00 0.54 0.09
STRSPA 0.00 1.70 0.61 0.06 1.87 0.68 0.00 0.53 0.09
DBALSS 0.00 1.64 0.56 0.03 1.74 0.61 0.00 0.45 0.07

d−3 1000 SRSWOR 0.00 1.59 0.45 0.36 1.82 0.73 0.00 1.26 0.26
STRSPA 0.00 1.55 0.41 0.27 1.77 0.66 0.00 1.22 0.23
DBALSS 0.00 1.38 0.32 0.17 1.55 0.49 0.00 1.03 0.15

5000 SRSWOR 0.00 1.00 0.19 0.14 1.21 0.31 0.00 0.72 0.09
STRSPA 0.00 1.00 0.18 0.13 1.22 0.30 0.00 0.72 0.08
DBALSS 0.00 0.85 0.13 0.07 0.95 0.20 0.00 0.54 0.05

10000 SRSWOR 0.00 0.83 0.13 0.07 0.98 0.21 0.00 0.54 0.05
STRSPA 0.00 0.82 0.13 0.07 0.97 0.21 0.00 0.53 0.05
DBALSS 0.00 0.69 0.09 0.02 0.78 0.14 0.00 0.42 0.04

d−4 1000 SRSWOR 0.00 1.34 0.28 0.28 1.57 0.62 0.05 1.22 0.30
STRSPA 0.00 1.30 0.25 0.18 1.52 0.57 0.01 1.18 0.26
DBALSS 0.00 1.13 0.18 0.07 1.29 0.42 0.00 0.99 0.17

5000 SRSWOR 0.00 0.75 0.08 0.05 0.90 0.23 0.01 0.68 0.09
STRSPA 0.00 0.73 0.07 0.05 0.91 0.23 0.00 0.68 0.09
DBALSS 0.00 0.60 0.05 0.01 0.69 0.16 0.00 0.52 0.05

10000 SRSWOR 0.00 0.55 0.04 0.02 0.69 0.15 0.00 0.51 0.05
STRSPA 0.00 0.55 0.04 0.01 0.69 0.15 0.00 0.50 0.05
DBALSS 0.00 0.41 0.03 0.00 0.52 0.11 0.00 0.38 0.03

Table 2

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F1 and RA, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.00 2.60 0.88 0.27 2.84 1.09 0.00 1.64 0.29
STRSPA 0.00 2.66 0.84 0.19 2.88 1.01 0.00 1.62 0.27
DBALSS 0.00 2.42 0.75 0.13 2.59 0.87 0.00 1.59 0.22

5000 SRSWOR 0.00 2.08 0.65 0.12 2.22 0.76 0.00 0.88 0.13
STRSPA 0.00 2.05 0.64 0.09 2.18 0.74 0.00 0.88 0.13
DBALSS 0.00 2.01 0.57 0.04 2.13 0.64 0.00 0.75 0.10

10000 SRSWOR 0.00 1.90 0.58 0.08 2.03 0.67 0.00 0.59 0.10
STRSPA 0.00 1.90 0.58 0.06 2.02 0.66 0.00 0.57 0.10
DBALSS 0.00 1.85 0.52 0.03 1.95 0.58 0.00 0.54 0.08

d−3 1000 SRSWOR 0.00 1.75 0.44 0.31 2.04 0.72 0.00 1.59 0.27
STRSPA 0.00 1.70 0.41 0.23 1.99 0.65 0.00 1.57 0.24
DBALSS 0.00 1.57 0.31 0.09 1.85 0.48 0.00 1.53 0.17

5000 SRSWOR 0.00 1.33 0.18 0.11 1.47 0.30 0.00 0.89 0.09
STRSPA 0.00 1.34 0.17 0.10 1.48 0.29 0.00 0.89 0.08
DBALSS 0.00 1.22 0.12 0.04 1.33 0.19 0.00 0.75 0.06

10000 SRSWOR 0.00 0.92 0.12 0.07 1.13 0.21 0.00 0.61 0.06
STRSPA 0.00 0.92 0.12 0.07 1.11 0.20 0.00 0.59 0.06
DBALSS 0.00 0.80 0.08 0.03 0.89 0.13 0.00 0.49 0.04

d−4 1000 SRSWOR 0.00 1.57 0.28 0.18 1.85 0.62 0.02 1.51 0.31
STRSPA 0.00 1.53 0.26 0.13 1.80 0.56 0.00 1.49 0.27
DBALSS 0.00 1.41 0.19 0.04 1.66 0.40 0.00 1.42 0.18

5000 SRSWOR 0.00 1.05 0.08 0.05 1.19 0.23 0.00 0.88 0.09
STRSPA 0.00 1.06 0.08 0.04 1.20 0.22 0.00 0.88 0.09
DBALSS 0.00 0.92 0.06 0.01 1.03 0.16 0.00 0.74 0.06

10000 SRSWOR 0.00 0.63 0.05 0.02 0.78 0.15 0.00 0.56 0.06
STRSPA 0.00 0.63 0.05 0.02 0.77 0.15 0.00 0.55 0.06
DBALSS 0.00 0.52 0.04 0.00 0.58 0.11 0.00 0.45 0.04
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Table 3

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F1 and TR, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.00 3.48 0.69 0.06 3.82 0.85 0.00 1.64 0.25
STRSPA 0.00 3.32 0.66 0.06 3.66 0.79 0.00 1.68 0.23
DBALSS 0.00 3.20 0.59 0.01 3.51 0.69 0.00 1.65 0.19

5000 SRSWOR 0.00 3.09 0.51 0.02 3.31 0.60 0.00 1.02 0.11
STRSPA 0.00 3.06 0.51 0.02 3.27 0.59 0.00 0.99 0.11
DBALSS 0.00 2.98 0.45 0.01 3.16 0.51 0.00 0.83 0.09

10000 SRSWOR 0.00 2.65 0.46 0.01 2.84 0.53 0.00 0.72 0.08
STRSPA 0.00 2.63 0.46 0.01 2.81 0.52 0.00 0.72 0.08
DBALSS 0.00 2.54 0.41 0.00 2.70 0.46 0.00 0.64 0.06

d−3 1000 SRSWOR 0.00 2.33 0.39 0.02 2.57 0.61 0.00 1.90 0.25
STRSPA 0.00 2.22 0.35 0.02 2.49 0.55 0.00 1.90 0.21
DBALSS 0.00 2.23 0.29 0.00 2.46 0.42 0.00 1.88 0.16

5000 SRSWOR 0.00 1.50 0.17 0.00 1.71 0.27 0.00 1.09 0.09
STRSPA 0.00 1.43 0.16 0.00 1.65 0.26 0.00 1.04 0.08
DBALSS 0.00 1.29 0.12 0.00 1.46 0.18 0.00 0.84 0.06

10000 SRSWOR 0.00 1.25 0.11 0.00 1.42 0.19 0.00 0.77 0.05
STRSPA 0.00 1.23 0.11 0.00 1.39 0.18 0.00 0.77 0.05
DBALSS 0.00 1.10 0.08 0.00 1.22 0.12 0.00 0.62 0.04

d−4 1000 SRSWOR 0.00 2.26 0.28 0.01 2.57 0.54 0.00 2.05 0.29
STRSPA 0.00 2.13 0.24 0.01 2.46 0.48 0.01 2.01 0.24
DBALSS 0.00 2.13 0.19 0.00 2.42 0.36 0.00 2.01 0.17

5000 SRSWOR 0.00 1.21 0.08 0.00 1.43 0.21 0.00 1.07 0.09
STRSPA 0.00 1.15 0.08 0.00 1.37 0.20 0.00 1.02 0.08
DBALSS 0.00 0.98 0.06 0.00 1.14 0.14 0.00 0.81 0.05

10000 SRSWOR 0.00 0.86 0.05 0.00 1.01 0.13 0.00 0.74 0.05
STRSPA 0.00 0.84 0.05 0.00 0.98 0.13 0.00 0.74 0.05
DBALSS 0.00 0.72 0.04 0.00 0.80 0.09 0.00 0.57 0.03

Table 4

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F1 and CL, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.00 2.38 0.23 0.04 2.58 0.31 0.00 1.21 0.12
STRSPA 0.00 2.28 0.22 0.03 2.44 0.29 0.00 1.20 0.11
DBALSS 0.00 2.25 0.19 0.02 2.38 0.23 0.00 1.08 0.09

5000 SRSWOR 0.00 2.12 0.16 0.01 2.25 0.19 0.00 0.83 0.05
STRSPA 0.00 2.12 0.16 0.01 2.23 0.18 0.00 0.84 0.05
DBALSS 0.00 2.09 0.14 0.01 2.20 0.16 0.00 0.86 0.04

10000 SRSWOR 0.00 2.16 0.14 0.01 2.29 0.17 0.00 0.78 0.04
STRSPA 0.00 2.16 0.14 0.01 2.28 0.16 0.00 0.78 0.04
DBALSS 0.00 2.14 0.12 0.00 2.27 0.14 0.00 0.78 0.03

d−3 1000 SRSWOR 0.00 1.56 0.15 0.04 1.69 0.24 0.00 1.22 0.14
STRSPA 0.00 1.57 0.15 0.03 1.69 0.23 0.00 1.21 0.13
DBALSS 0.00 1.50 0.12 0.02 1.61 0.17 0.00 1.09 0.09

5000 SRSWOR 0.00 1.42 0.08 0.01 1.51 0.12 0.00 0.88 0.05
STRSPA 0.00 1.42 0.08 0.01 1.51 0.12 0.00 0.88 0.05
DBALSS 0.00 1.36 0.06 0.01 1.45 0.09 0.00 0.90 0.04

10000 SRSWOR 0.00 1.37 0.06 0.01 1.46 0.09 0.00 0.80 0.03
STRSPA 0.00 1.38 0.06 0.01 1.46 0.09 0.00 0.81 0.03
DBALSS 0.00 1.35 0.05 0.00 1.43 0.07 0.00 0.79 0.02

d−4 1000 SRSWOR 0.00 1.43 0.13 0.04 1.57 0.23 0.02 1.24 0.15
STRSPA 0.00 1.44 0.13 0.03 1.57 0.22 0.01 1.23 0.14
DBALSS 0.00 1.35 0.10 0.02 1.47 0.17 0.00 1.10 0.10

5000 SRSWOR 0.00 1.22 0.06 0.01 1.32 0.10 0.00 0.92 0.06
STRSPA 0.00 1.22 0.06 0.01 1.31 0.10 0.00 0.92 0.06
DBALSS 0.00 1.14 0.04 0.01 1.23 0.08 0.00 0.92 0.04

10000 SRSWOR 0.00 1.12 0.04 0.01 1.21 0.07 0.00 0.83 0.04
STRSPA 0.00 1.12 0.04 0.01 1.21 0.07 0.00 0.83 0.04
DBALSS 0.00 1.07 0.03 0.00 1.15 0.05 0.00 0.80 0.02
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Table 5

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F2 and RE, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.24 2.96 0.76 0.28 3.29 0.88 0.00 1.92 0.16
STRSPA 0.22 2.95 0.72 0.25 3.27 0.82 0.00 1.86 0.12
DBALSS 0.19 2.92 0.67 0.22 3.27 0.75 0.00 2.02 0.11

5000 SRSWOR 0.16 3.20 0.56 0.19 3.47 0.63 0.01 2.09 0.08
STRSPA 0.16 3.22 0.55 0.18 3.48 0.61 0.00 2.08 0.07
DBALSS 0.14 3.17 0.51 0.15 3.45 0.55 0.00 2.11 0.05

10000 SRSWOR 0.15 3.13 0.50 0.18 3.35 0.56 0.00 1.76 0.06
STRSPA 0.15 3.12 0.50 0.17 3.35 0.55 0.00 1.79 0.06
DBALSS 0.12 3.07 0.46 0.14 3.30 0.50 0.00 1.73 0.04

d−3 1000 SRSWOR 0.04 2.87 0.37 0.07 3.38 0.53 0.00 2.41 0.21
STRSPA 0.03 2.81 0.34 0.05 3.38 0.46 0.00 2.37 0.16
DBALSS 0.02 2.84 0.29 0.03 3.41 0.39 0.00 2.59 0.15

5000 SRSWOR 0.01 3.13 0.18 0.02 3.58 0.25 0.00 2.66 0.09
STRSPA 0.01 3.15 0.18 0.02 3.58 0.24 0.00 2.64 0.08
DBALSS 0.00 3.07 0.14 0.01 3.55 0.18 0.00 2.69 0.06

10000 SRSWOR 0.01 2.94 0.14 0.02 3.37 0.19 0.00 2.29 0.06
STRSPA 0.01 2.95 0.14 0.01 3.38 0.18 0.00 2.31 0.06
DBALSS 0.00 2.84 0.11 0.01 3.30 0.14 0.00 2.28 0.04

d−4 1000 SRSWOR 0.00 2.87 0.26 0.03 3.49 0.43 0.00 2.74 0.24
STRSPA 0.00 2.90 0.23 0.02 3.49 0.37 0.00 2.72 0.20
DBALSS 0.00 2.87 0.20 0.01 3.53 0.31 0.00 2.92 0.18

5000 SRSWOR 0.00 3.11 0.11 0.01 3.67 0.19 0.00 2.99 0.10
STRSPA 0.00 3.13 0.10 0.01 3.67 0.18 0.00 2.97 0.09
DBALSS 0.00 3.04 0.08 0.00 3.63 0.14 0.00 3.00 0.07

10000 SRSWOR 0.00 2.90 0.08 0.00 3.46 0.13 0.00 2.66 0.07
STRSPA 0.00 2.91 0.07 0.00 3.47 0.13 0.00 2.67 0.07
DBALSS 0.00 2.83 0.06 0.00 3.40 0.10 0.00 2.64 0.05

Table 6

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F2 and RA, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.17 3.04 0.67 0.23 3.27 0.82 0.00 1.52 0.16
STRSPA 0.16 3.02 0.64 0.21 3.22 0.74 0.00 1.38 0.12
DBALSS 0.10 3.05 0.59 0.14 3.26 0.67 0.00 1.74 0.11

5000 SRSWOR 0.11 3.08 0.53 0.16 3.36 0.60 0.00 1.85 0.09
STRSPA 0.11 3.10 0.52 0.15 3.36 0.59 0.00 1.82 0.08
DBALSS 0.07 3.08 0.47 0.09 3.34 0.52 0.00 1.87 0.06

10000 SRSWOR 0.11 3.26 0.47 0.15 3.49 0.54 0.00 1.91 0.07
STRSPA 0.11 3.28 0.47 0.14 3.50 0.53 0.00 1.94 0.07
DBALSS 0.08 3.27 0.43 0.10 3.48 0.47 0.00 1.92 0.05

d−3 1000 SRSWOR 0.02 2.92 0.34 0.05 3.28 0.48 0.00 2.20 0.20
STRSPA 0.02 2.88 0.30 0.04 3.21 0.41 0.00 2.08 0.15
DBALSS 0.00 2.97 0.25 0.02 3.32 0.35 0.00 2.52 0.14

5000 SRSWOR 0.00 2.89 0.18 0.02 3.36 0.25 0.00 2.34 0.09
STRSPA 0.00 2.90 0.17 0.02 3.35 0.24 0.00 2.31 0.08
DBALSS 0.00 3.02 0.13 0.01 3.46 0.18 0.00 2.56 0.06

10000 SRSWOR 0.00 3.12 0.13 0.01 3.50 0.18 0.00 2.39 0.06
STRSPA 0.00 3.16 0.13 0.01 3.53 0.17 0.00 2.40 0.06
DBALSS 0.00 3.20 0.10 0.00 3.62 0.13 0.00 2.77 0.04

d−4 1000 SRSWOR 0.00 2.87 0.23 0.02 3.37 0.40 0.00 2.61 0.23
STRSPA 0.00 2.82 0.21 0.02 3.35 0.34 0.00 2.49 0.18
DBALSS 0.00 3.00 0.18 0.01 3.47 0.29 0.00 2.84 0.16

5000 SRSWOR 0.00 3.01 0.11 0.01 3.52 0.18 0.00 2.70 0.10
STRSPA 0.00 3.02 0.10 0.01 3.51 0.18 0.00 2.68 0.09
DBALSS 0.00 3.22 0.08 0.00 3.71 0.14 0.00 3.04 0.07

10000 SRSWOR 0.00 3.19 0.07 0.00 3.69 0.12 0.00 2.96 0.07
STRSPA 0.00 3.17 0.07 0.00 3.67 0.12 0.00 2.91 0.06
DBALSS 0.00 3.40 0.05 0.00 3.89 0.09 0.00 3.35 0.05
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Table 7

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F2 and TR, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.05 2.75 0.72 0.10 2.96 0.87 0.00 1.58 0.17
STRSPA 0.05 2.64 0.67 0.09 2.84 0.78 0.00 1.42 0.13
DBALSS 0.02 2.72 0.61 0.03 2.91 0.70 0.00 1.71 0.11

5000 SRSWOR 0.02 2.63 0.54 0.04 2.86 0.62 0.00 1.36 0.09
STRSPA 0.02 2.63 0.53 0.04 2.86 0.60 0.00 1.34 0.08
DBALSS 0.01 2.70 0.48 0.01 2.92 0.53 0.00 1.63 0.06

10000 SRSWOR 0.02 2.78 0.49 0.02 2.99 0.56 0.00 1.35 0.07
STRSPA 0.02 2.78 0.49 0.02 2.99 0.55 0.00 1.31 0.07
DBALSS 0.01 2.83 0.44 0.01 3.03 0.49 0.00 1.59 0.05

d−3 1000 SRSWOR 0.00 2.68 0.29 0.04 3.21 0.41 0.00 2.18 0.15
STRSPA 0.00 2.66 0.33 0.04 3.15 0.49 0.00 2.17 0.20
DBALSS 0.00 2.72 0.25 0.01 3.36 0.34 0.00 2.59 0.13

5000 SRSWOR 0.00 2.91 0.16 0.01 3.27 0.23 0.00 2.33 0.08
STRSPA 0.00 2.93 0.17 0.01 3.29 0.24 0.00 2.36 0.09
DBALSS 0.00 2.96 0.13 0.00 3.32 0.17 0.00 2.62 0.06

10000 SRSWOR 0.00 2.88 0.13 0.00 3.30 0.18 0.00 2.20 0.06
STRSPA 0.00 2.87 0.13 0.00 3.29 0.18 0.00 2.20 0.06
DBALSS 0.00 3.10 0.10 0.00 3.46 0.13 0.00 2.41 0.05

d−4 1000 SRSWOR 0.00 2.71 0.22 0.04 3.38 0.40 0.00 2.61 0.22
STRSPA 0.00 2.80 0.19 0.04 3.43 0.33 0.00 2.65 0.18
DBALSS 0.00 2.83 0.16 0.01 3.57 0.27 0.00 3.06 0.15
SRSWOR 0.00 2.95 0.10 0.01 3.46 0.18 0.00 2.79 0.10
STRSPA 0.00 2.94 0.10 0.01 3.45 0.17 0.00 2.75 0.09
DBALSS 0.00 3.00 0.08 0.00 3.53 0.13 0.00 2.98 0.07

10000 SRSWOR 0.00 2.92 0.07 0.01 3.49 0.13 0.00 2.74 0.07
STRSPA 0.00 2.95 0.07 0.01 3.50 0.13 0.00 2.75 0.07
DBALSS 0.00 3.27 0.06 0.00 3.72 0.10 0.00 2.97 0.05

Table 8

Minima, maxima and means of ABs, RMSEs and ABRMSEEs achieved with a sampling
fraction of 10% for populations arising from F2 and CL, for any combination of population

size, sampling scheme and distance function

φ(d) N Scheme AB RMSE ABRMSEE
Min Max Mean Min Max Mean Min Max Mean

d−2 1000 SRSWOR 0.00 2.72 0.22 0.03 3.09 0.28 0.00 1.85 0.09
STRSPA 0.00 2.77 0.20 0.02 3.09 0.24 0.00 1.83 0.07
DBALSS 0.00 2.73 0.18 0.01 3.01 0.21 0.00 1.87 0.05

5000 SRSWOR 0.00 2.63 0.15 0.01 2.88 0.18 0.00 1.26 0.03
STRSPA 0.00 2.63 0.15 0.01 2.87 0.18 0.00 1.24 0.03
DBALSS 0.00 2.67 0.13 0.00 2.88 0.15 0.00 1.25 0.02

10000 SRSWOR 0.00 2.71 0.14 0.00 2.94 0.16 0.00 1.30 0.02
STRSPA 0.00 2.69 0.14 0.00 2.92 0.15 0.00 1.27 0.02
DBALSS 0.00 2.78 0.12 0.00 2.99 0.13 0.00 1.33 0.02

d−3 1000 SRSWOR 0.00 2.75 0.13 0.01 3.24 0.19 0.00 2.30 0.10
STRSPA 0.00 2.79 0.12 0.01 3.24 0.17 0.00 2.30 0.08
DBALSS 0.00 2.73 0.10 0.01 3.15 0.14 0.00 2.38 0.06

5000 SRSWOR 0.00 2.75 0.07 0.00 3.14 0.10 0.00 1.97 0.04
STRSPA 0.00 2.75 0.07 0.00 3.13 0.09 0.00 1.95 0.04
DBALSS 0.00 2.79 0.05 0.00 3.15 0.07 0.00 2.01 0.03

10000 SRSWOR 0.00 2.89 0.05 0.00 3.27 0.07 0.00 2.11 0.03
STRSPA 0.00 2.85 0.05 0.00 3.24 0.07 0.00 2.05 0.03
DBALSS 0.00 3.09 0.04 0.00 3.41 0.05 0.00 2.23 0.02

d−4 1000 SRSWOR 0.00 2.39 0.11 0.01 3.33 0.18 0.00 2.54 0.12
STRSPA 0.00 2.77 0.10 0.01 3.33 0.16 0.00 2.56 0.10
DBALSS 0.00 2.71 0.08 0.01 3.24 0.13 0.00 2.65 0.08

5000 SRSWOR 0.00 2.77 0.05 0.00 3.27 0.08 0.00 2.40 0.04
STRSPA 0.00 2.77 0.05 0.03 3.26 0.08 0.00 2.38 0.04
DBALSS 0.00 2.88 0.04 0.00 3.28 0.06 0.00 2.46 0.03

10000 SRSWOR 0.00 2.97 0.04 0.00 3.46 0.06 0.00 2.58 0.03
STRSPA 0.00 2.93 0.04 0.00 3.42 0.06 0.00 2.53 0.03
DBALSS 0.00 3.23 0.03 0.00 3.63 0.04 0.00 2.73 0.02
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combination of mark function, sampling scheme, distance function, population
size and spatial pattern.

6.4. Results

The simulation results confirmed the theoretical findings of Sections 3-5. Because
F1 was continuous and points were generated to approach condition (4.1), for
β > 2 all the sampling schemes ensured pointwise design consistency. Indeed, as
N and n increased, a sharp decrease of the minima, maxima and averages of ABs
and RMSEs occurred for β > 2. The decreases were less marked for β = 2, when
consistency was not ensured by the distance function. As previously argued, the
best performance was achieved with CL and TR patterns, where the clumping
of points was more marked than in the case of RA and RE patterns.

Regarding the sampling schemes, spatial balance ensured the best perfor-
mance, stated that DBALLS performed better than STRSPA that in turn per-
formed better than SRSWOR (see Tables 1-4). The function F2 showed a dis-
continuity at the edge of the upper right quadrant of the unit square. Hence,
pointwise design consistency was ensured only away from the discontinuity lines
for β > 2 and for all the sampling schemes. Actually, sharp decreases occurred
only for the minima and averages of ABs and RMSEs for β > 2, while maxima re-
mained about constant as the sample size increased. Besides this fact, the results
are quite similar to those achieved for F1. The decreases (where they occurred)
were less marked for β = 2, the best performance was achieved in presence of
CL and TR patterns while RE and RA patterns provided smaller precision and
DBALLS performed best while SRSWOR performed worst (see Tables 5-8).

Regarding the RMSE estimation, the bias of (5.1) reduced as the sample size
increased, confirming the theoretical results of Section 5. Regarding the β choice,
the performance in terms of ABs and RMSEs tended to improve as β increased
reaching its best for β = 4. On the other hand, the bias of the RMSE estimator
tended to increase when passing from β = 3 to β = 4 especially for moderate
population and sample sizes. Even if the issue needs for more theoretical and
empirical investigations, a β choice between 3 and 4 seems to be a suitable
compromise value.

7. Case study

A sample survey was performed to provide the map of tree heights in a semi-
natural mixed oak-hornbeam flood plain forest in the province of Mantova
(North Italy). The forest stand was a rectangular area of size 70 × 140 m2.
Owing to the moderate size of the forest, 3P sampling was adopted to select
trees, as customary in most forest surveys over small stands, thus allowing for the
subsequent mapping of the tree heights. Because the purpose of the study was
simply to produce the height map without giving explanation about the process
that dislocated trees and generated heights, the complex task of modelling the
marked point process and estimating its parameters was avoided and we opted to
produce the maps in a design-based framework adopting the IDW interpolation.
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As pointed out in the Introduction, the merit was that the resulting precision
- being based on 3P sampling actually used to select trees - was real, not assumed
or modelled. The survey proceeded in accordance with the following steps. In
spring 2016 a crew of experts visited the population U of the N = 510 trees
lying in the stand, recording their locations and giving a prediction xj for the
height of each tree j ∈ U (see Figure 1a). Then, 3P sampling was performed
by independently selecting each tree with probability πj = xj/M where M was
an upper bound for heights that was set equal to 151.373 m, in such a way to
ensure πj ≤ 1 for each j ∈ U and such that the sum of probabilities provided
an expected sample size of 50 trees. The selected sample S was constituted by
n = 54 trees whose heights yj were measured for each j ∈ S.

Subsequently, in order to perform the IDW interpolation, we realized that
3P sampling not only provided a scheme suitable to work with forest stands of
moderate sizes exploiting predictions at design level, but predictions themselves
should provide good proxies for the actual trees heights that could be exploited
at estimation level. Indeed, for the sampled trees both predictions xj and actual
heights were known, in such a way that also the prediction errors ej = yj − xj

were known for each j ∈ S.
Therefore, in the spirit of the difference estimation criterion adopted to ex-

ploit proxies for improving the Horvitz-Thompson estimator of population totals
(e.g. [22] Section 6.3), the prediction errors rather than the heights were inter-
polated by IDW, in such a way that the interpolated heights were given by the
predicted heights plus the interpolated errors, i.e.

ŷj = xj + êj , j ∈ U . (7.1)

It should be noticed that (7.1) kept on being a genuine interpolator for yj
because when j ∈ S, then êj = ej , in such a way that ŷj = xj + êj = yj . More-
over, the procedure was likely to better meet design consistency requirements,
because the assumption of smoothness was even more realistic when consider-
ing prediction errors than heights. Indeed, jumps and irregularities in the tree
heights throughout the stand were presumably absorbed by similar jumps and
irregularities in the corresponding predictions.

Consequently, if predictions were good, prediction errors turned out to be
more smoothed than heights. Practically speaking the interpolation proceeded
in accordance with the following steps. Once the prediction errors ejs were com-
puted from sample data for each j ∈ S, the interpolated errors êj were computed
for each j ∈ U by means of equation (2.1), where the ejs are used instead of
the yjs and using the distance function φ(d) = d−3. Once the errors were in-
terpolated, the interpolated heights were achieved by means of equation (7.1).
Figures 1b and 1c show the maps of the interpolated errors and heights, respec-
tively. Moreover, regarding the estimation of the precision, the uncertainty in
the interpolated heights only stemmed from the uncertainty in the interpolated
errors, the predictions being constant. Therefore, mean squared errors were es-
timated by means of equation (5.1), where once again the ejs are used instead
of the yjs. Figure 1d shows the map of the estimated root mean squared errors.
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Fig 1. Maps of the predicted heights (a), interpolated prediction errors (b), interpolated heights
(c) and estimated root means squared errors (d).

Fig 2. Plot of the predicted heights vs the actual heights for the sampled trees.

Some considerations are due. First of all, it should be noticed that the pre-
diction errors can take negative values but they are obviously bounded by M ,
in such a way that all the consistency results hold. Moreover, at least for the
sampled trees, the predicted heights turned out to be good proxies of the actual
eights, as showed in Figure 2. In particular, predictions explained the 0.998 of
the height variability in the sample. In turn, the goodness of predictions should
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entail smoothness of the prediction errors that are the quantities to be interpo-
lated. Finally, the spatial pattern of trees throughout the stand did not evidence
isolated individuals whose prediction would be problematic. Therefore, from the
theoretical findings, but also at the light of the simulation results that showed
the effectiveness of the IDW interpolation for populations increasing regularly
with smoothed mark functions (i.e. the F1 case), the map of tree heights re-
ported in Figure 1c is likely to be a reliable picture of the actual map.

8. Conclusions

Accurate and updated wall-to wall maps depicting the spatial pattern of eco-
logical and economic attributes throughout the study area represents a crucial
information for evaluations, decision making and planning. Traditionally maps,
as well as most of the issues of spatial statistics, are approached in a model-
based framework (e.g. [3]). Recently we have addressed map estimation in a
complete design-based framework simply adopting the IDW interpolator and
deriving its properties from the sampling scheme. We first approached this issue
for finite population of spatial units, when the survey variable is the amount of
an attribute within units ([7]). Subsequently, we considered map estimation for
continuous populations when the survey variable is, at least in principle, defined
at each point of the continuum representing the study area ([8]). Finally, in this
paper we have faced map estimation for finite populations of marked points.

Maps of marked point populations are frequently possible in economic and
social studies, where locations of units such as towns or firms are available
from administrative sources or official data. On the other hand, because the list
and locations of units in natural populations, such as communities of animals
and plants, are prohibitive to achieve, maps rarely arise from ecological and
environmental surveys. The sole occasions in which locations of natural point
populations are available occur under 3P sampling, because the scheme entails
visiting and hence recording locations for all the population units.

Our design-based approach to spatial mapping avoids the massive modelling
involved in model-based approaches, i.e. the use of spatial models on lattices
required for finite populations of spatial units (e.g. [3], Chapter 6), the use of
second-order stationary spatial processes required for continuous populations
(e.g. [3], Chapter 3) and the marked point processes in the plane required for
finite populations of marked points (e.g. [3], Chapter 8). Design-based asymp-
totic unbiasedness and consistency of the resulting maps are achieved exploiting
different asymptotic scenarios at the cost of supposing i) some forms of smooth-
ness of the survey variables throughout the study area; ii) some sort of regu-
larities that are necessary in the case of finite populations such as regularities
in the shape of spatial units or regularities in the enlargements of the point
populations; iii) asymptotically balanced spatial sampling schemes; iv) the use
of distance functions sharing some mathematical properties. It is worth noting
that iii) is satisfied by most of the more common sampling schemes adopted
in spatial surveys and iv) does not constitute an assumption because it can be
readily ensured by the user.
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Finally, a quite surprising result should be emphasized. While for estimating
totals or averages of marked point populations, aggregated or trended spatial
patterns heavily deteriorate the design-based precision of the estimators with
respect to randomly or regular patterns (e.g. [13]), the opposite occurs in map
estimation. In this case both theoretical considerations and empirical studies
suggest that aggregated and trended patterns provide the best results. Even if
unexpected, this result has a clear explanation. Because aggregated and trended
patterns tend to clump points more rapidly than regular and random patterns,
distances between points tend to be smaller in the former cases, so that IDW
interpolation tends to exploit nearer points, that, in case of smoothed mark
functions, means exploiting more similar marks, thus providing a better fitting
of the Tobler’s law which assists inference.
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Appendix A: proofs of the main results

A.1. Proof of Lemma

From the definition of IDW interpolator of yj , for any k ≥ k(j) it follows that

|ŷ(k)j − yj | = |(1− Z
(k)
j )

∑
i∈Uk

(yi − yj)Z
(k)
i φ(dij)∑

i∈Uk
Z
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i φ(dij)

|

≤ (1− Z
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j (δ) when i ∈ B

(k)
j (δ), φ(dij) ≤ φ(δ) when
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(k)
j (δ) and |yi − yj | ≤ L for any i ∈ Uk. Therefore, denoted by T k
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j (vN−α

k ) = 0}, for any α, v > 0, it follows that
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≤ Δ
(k)
j (δ) +

Lφ(δ)nk∑
i∈Uk

Z
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(1− T k
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i∈B
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i∈Uk
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. Inequality (A.1) is obvious when Z
(k)
j = 1,

because in this case |ŷ(k)j − yj | = 0. On the other hand, when Z
(k)
j = 0 and

I{Z(k)
j (vN−α

k ) > 0}, there is at least one i ∈ Uk, i �= j such that φ(dij) ≥
φ(vN−α

k ). Therefore ∑
i∈Uk

Z
(k)
i φ(dij) ≥ φ(vN−α

k ) (A.2)

in such a way that inequality (A.1) reduces to

|ŷ(k)j − yj | ≤ Δ
(k)
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= Δ
(k)
j (δ) + Lβk

(A.3)

where
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Accordingly, from (A.3)
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Therefore, taking the expectation of both sides of the previous inequality it
follows that
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that proves the first part of Lemma.

Moreover, denoted by T̃ k
j = I{minj∈Uk

Z
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(
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)
= 0}, arguing as in the

first part of the proof that leads to (A.1), it follows that
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Then, owing to (A.2)
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Therefore, the second part of Lemma follows arguing as in the final part of the
proof regarding the first part.
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A.2. Proof of Result 1

Let α = 1/2. For any δ, v > 0 and for any natural number j, from the first
inequality of Lemma it follows that

E{(ŷ(k)j − yj)
2
} ≤ 2{Δ(k)

j (δ)}
2
+ 2L2

[ φ2(δ)n2
k

φ2(vN
−1/2
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+ Pr{Z(k)
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−1/2
k ) = 0}

]
.

Owing to condition (3.6), for any pj and any ε > 0 there exist a real number
v > 0 and an integer k0 such that

Pr{Z(k)
j (v0N

−1/2
k ) = 0} < ε ∀ k > k0.

Moreover, from condition (3.8) it follows that

lim
k→∞

φ2(δ)n2
k

φ2(vN
−1/2
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= 0. (A.4)

Therefore, there exists an integer k0 such that

E{(ŷ(k)j − yj)
2
} ≤ 2{Δ(k)

j (δ)}
2
+ 4L2ε ∀ k > k0.

Finally, if y is continuous at pj , then owing to (3.3) there exists a δ > 0 such
that

sup
k>k(j)

{Δ(k)
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2
< ε

from which there exists an integer k0 such that

E{(ŷ(k)j − yj)
2
} ≤ (2 + 4L2)ε ∀ k > k0

and, from the arbitrariness of ε, it follows that

lim
k→∞

E{(ŷ(k)j − yj)
2
} = 0

that obviously entails (3.1).
The uniform consistency with respect to {Uk} can be proven in a similar way

by using the second inequality of Lemma, relation (A.4) and conditions (3.7)
and (3.4).

A.3. Proof of Result 2

Owing to the Lipschitz condition (3.11), from the first inequality of Lemma and
from the use of a distance function of type φ(d) = d−β , for any j, any δ > 0
and for any k such that k ≥ k(j), it follows that
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} ≤ 2(Cδ)
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Therefore, for
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A.4. Proof of Result 3

For any random variable X taking natural values Pr(X = 0) ≤ CV 2(X)
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ih ≤ ε

4
∀ k > k0

in such a way that

CV 2{Z(k)
j (υN

− 1
2

k )] ≤ ε ∀ k > k0

that proves (A.5).

A.5. Proof of consistency under SRSWOR and STRSPA

Consider the sequence of SRSWOR designs in which a constant fraction 0 <
p < 1 of units is selected from each population Uk of size Nk. In this case

π
(k)
j = p and π

(k)
jh = (p2Nk − p)/(Nk − 1) for each h �= j ∈ Uk and each k.

Because (4.2) holds for any sequence of designs such that π
(k)
j ≥ p > 0 for all j

and k, and condition (4.3) is immediately verified under SRSWOR stated that

π
(k)
jh − π

(k)
j π

(k)
h is invariably negative, SRSWOR ensures pointwise consistency.

Point-wise consistency is ensured also by STRSPA in which the sequence of
populations of size Nk is partitioned into L strata of increasing sizes Nlk for
l = 1, . . . , L and a constant fraction p of units is selected from each stratum by

means of SRSWOR. In this case π
(k)
j = p and π

(k)
jh − π

(k)
j π

(k)
h turns out to be

invariably negative if j and h belong to the same stratum or zero if they belong
to different strata.

A.6. Proof of consistency under 3P sampling

Consider the sequence of 3P designs in which a random number nk of units
is selected from each population Uk of size Nk in such a way that each unit
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in the population enters the sample with probability π
(k)
j = xj/M for any

j ∈ Uk, where M is an upper bound of the survey variable Y ensuring that any

acceptable prediction xj be smaller than M so that π
(k)
j ≤ 1 for any j ∈ Uk and

any k. If there exists also a lower bound for Y , say l > 0, then π
(k)
j ≥ l/M > 0

for any j ∈ Uk and any k. Therefore condition (4.2) holds and condition (4.3)

is immediately verified stated that π
(k)
jh = π

(k)
j π

(k)
h owing to the independence

of drawings and hence π
(k)
jh − π

(k)
j π

(k)
h is invariably zero. It is worth noting that

a lower bound for the survey variable Y naturally arises in most forest and
environmental surveys in which units with a mark (e.g tree height or basal
area) smaller than a given threshold are not considered in the population.

A.7. Proof of Result 4

Owing to relation (A.6) and from condition (4.5), it follows that

Pr{Z(k)
j (υN

− 1
2

k ) = 0} ≤ 1

γCard{B(k)
j (υN

− 1
2

k )}
≤ 1

γCard{B(k)
j (υN

− 1
2

k )
⋂

Uk}
.

Therefore, owing to condition (4.4) there exists a real number cj > 0 such that

Pr{Z(k)
j (υN

− 1
2

k ) = 0} ≤ (γcj)
−1v

−2 ∀ k > k(j), 0 < v ≤ N
1/2
k diam(A).

Then, condition (3.12) is proven, that in turns, if y is a Lipschitz function on
V , implies Result 2.

A.8. Proof of Result 5

Since (ỹ
(k)
j − yj)

2
and V̂

(k)
j are bounded by L2, from the Hölder-Schwarz in-

equality it follows that

MSE(ŷ
(k)
j ) = E{V̂ (k)

j }+ E{(ỹ(k)j − yj)
2
}+ 2E{(ŷ(k)j − ỹj)(ỹ

(k)
j − yj)}

≤ E{V̂ (k)
j }+ E{(ỹ(k)j − yj)

2
}+ 2[E{V̂ (k)

j }]1/2[E{(ỹ(k)j − yj)
2
}]1/2

≤ E{V̂ (k)
j }+ L[E{(ỹ(k)j − yj)

2
}]1/2 + 2L[E{(ỹ(k)j − yj)

2
}]1/2

that proves (5.3).
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