20 research outputs found

    Vitamin E Deficiency as a Model of Precocious Brain Aging: Assessment by X-Ray Microanalysis and Morphometry

    Get PDF
    Vitamin E (α-tocopherol) is a known biological antioxidant able to quench the lipid peroxidation chain and to protect the cellular structures (e.g., plasma membranes) from the attack of free radicals which are reported to play a primary role in aging. To assess whether the absence of α-tocopherol from the diet of young laboratory animals may be considered a reliable model of precocious brain aging, intracellular ionic content of brain cortex pyramidal cells, ultrastructural features of synaptic contact zones, synaptic mitochondria and perykarial mitochondria positive to the succlillc dehydrogenase (SDH) histochemical reaction with copper ferrocyanide have been investigated by X-ray microanalysis and computer-assisted morphometry in young, adult, old and 11-month-old vitamin E deficient rats. Our data document significant alterations of intracellular ionic content, synaptic contact areas and synaptic and perykarial mitochondria in aging. Vitamin E deficiency caused similar alterations in adult animals. Taking into account the known role of α-tocopherol in protecting the cellular membrane structure, we support that the common process underlying the changes found in aging and vitamin E deficiency is an excessive deterioration of the neuronal membrane

    Neonatal exposure to permethrin pesticide causes lifelong fear and spatial learning deficits and alters hippocampal morphology of synapses.

    Get PDF
    During the neurodevelopmental period, the brain is potentially more susceptible to environmental exposure to pollutants. The aim was to determine if neonatal exposure to permethrin (PERM) pesticide, at a low dosage that does not produce signs of obvious abnormalities, could represent a risk for the onset of diseases later in the life. METHODS: Neonatal rats (from postnatal day 6 to 21) were treated daily by gavage with a dose of PERM (34 mg/kg) close to the no-observed-adverse-effect level (NOAEL), and hippocampal morphology and function of synapses were investigated in adulthood. Fear conditioning, passive avoidance and Morris water maze tests were used to assess cognitive skills in rats, whereas electron microscopy analysis was used to investigate hippocampal morphological changes that occurred in adults. RESULTS: In both contextual and tone fear conditioning tests, PERM-treated rats showed a decreased freezing. In the passive avoidance test, the consolidation of the inhibitory avoidance was time-limited: the memory was not impaired for the first 24 h, whereas the information was not retained 72 h following training. The same trend was observed in the spatial reference memories acquired by Morris water maze. In PERM-treated rats, electron microscopy analysis revealed a decrease of synapses and surface densities in the stratum moleculare of CA1, in the inner molecular layer of the dentate gyrus and in the mossy fibers of the hippocampal areas together with a decrease of perforated synapses in the stratum moleculare of CA1 and in the inner molecular layer of the dentate gyrus. CONCLUSIONS: Early-life permethrin exposure imparts long-lasting consequences on the hippocampus such as impairment of long-term memory storage and synaptic morphology

    Blood volume is improved by forced mild physical training in the motor and hippocampal cortex of old mice

    Get PDF
    The effect of mild forced physical training [1] (treadmill running 30 min a day, five days a week for 30 days at belt speed = 8 m/min, 0% incline) on the motor and hippocampal brain cortex was investigated in old (>24mo) mice by means of magnetic resonance imaging. The possible additive effect of physical training and testosterone [2] administration was also examined. Cortical thickness, quantitative transverse relaxation time (T2) maps, and regional cerebral blood volume (rCBV) were evaluated at baseline and after training. Results show that physical training alone induced significant increase of rCBV in both motor and hippocampal cortex. Cortex thickness and T2 maps were similar before and after training. Similar results were obtained in testosterone treated mice suggesting that testosterone does not add to physical training effect. This work provides first quantitative evidence that exercise initiated at old age is able to improve the hemodynamic status of the brain cortex in key regions for movement and cognition without inducing edema

    Testosterone administration increases synaptic density in the gyrus dentatus of old mice independently of physical exercise

    No full text
    Testosterone and physical exercise administration have been shown to affect hippocampal morphology in adult rodents. In aged animals, similar data are only available after physical exercise. In this work we used ultrastructural quantitative morphometry to investigate the effect of testosterone administration on the hippocampal synapses of old mice, either alone or in combination with aerobic physical exercise. The inner molecular layer of the hippocampal dentate gyrus (IMLDG) and the molecular stratum of Ammon's horn 1 neurons (SMCA1) were investigated in 27-month-old male Balb/c mice randomly allocated to one of four experimental conditions (five mice each): sedentary control (C), testosterone administration (10\u202fmg/kg once a week, TA), treadmill training (30\u202fmin a day, five days a week for 4\u202fweeks at belt speed 8\u202fm/min, 0% incline, TT) and testosterone administration plus treadmill training (TTTA). At the end of a four-week period, hippocampi were excised, fixed, and processed by ethanol phosphotungstic acid procedure to contrast synapses. The following variables were measured in electron micrographs: number of synapses/\u3bcm3 of tissue (Nv), total area of contact zones/\u3bcm3 of tissue (Sv), average area of the synaptic contact zone (S), and percentage of perforated synapses (%PS). ANOVA showed a statistically significant main effect of experimental condition for Nv and Sv in IMLDG, and for Sv in SMCA1 (p\u202f 64\u202f0.003). The S and %PS were similar within group in ANOVA. Post-hoc analysis revealed a significant (p\u202f<\u202f0.05) increase of Sv vs. C in SMCA1 and IMLDG after TT and TA, respectively. In IMLDG, Nv was significantly increased vs. C and TT after both TA and TTTA. Overall, results showed that testosterone increases synaptic density in IMLDG of old mice independently of physical exercise or changes in synaptic size. Instead, synaptic density in SMCA1 was only sensitive to physical exercise. These findings show that exogenous testosterone administration exerts a positive effect of on synapses in selected areas of the old mouse hippocampus

    Modulatory Effect of Aerobic Physical Activity on Synaptic Ultrastructure in the Old Mouse Hippocampus

    Get PDF
    Aerobic physical exercise (APE) leads to improved brain functions. To better understand the beneficial effect of APE on the aging brain, a morphometric study was carried out of changes in hippocampal synapses of old (>27 months) Balb/c mice undergoing treadmill training (OTT) for 4 weeks in comparison with old sedentary (OS), middle-aged sedentary (MAS) and middle-aged treadmill training (MATT) mice. The inner molecular layer of the hippocampal dentate gyrus (IMLDG) and the molecular stratum of Ammon’s horn1 neurons (SMCA1) were investigated. The number of synapses per cubic micron of tissue (numeric density, Nv), overall synaptic area per cubic micron of tissue (surface density, Sv), average area of synaptic contact zones (S), and frequency (%) of perforated synapses (PS) were measured in electron micrographs of ethanol-phosphotungstic acid (E-PTA) stained tissue. Data were analyzed with analysis of variance (ANOVA). In IMLDG, an effect of age was found for Nv and Sv, but not S and %PS. Similar results were found for exercise and the interaction of age and exercise. In post hoc analysis Nv was higher (60.6% to 75.1%; p < 0.001) in MATT vs. MAS, OS and OTT. Sv was higher (32.3% to 54.6%; p < 0.001) in MATT vs. MAS, OS and OTT. In SMCA1, age affected Nv, Sv and %PS, but not S. The effect of exercise was significant for Sv only. The interaction of age and exercise was significant for Nv, Sv and %PS. In post hoc analysis Nv was lower in OS vs. MAS, MATT and OTT (−26.1% to −32.1%; p < 0.038). MAS and OTT were similar. Sv was lower in OS vs. MAS, MATT and OTT (−23.4 to −30.3%, p < 0.004). MAS and OTT were similar. PS frequency was higher in OS vs. MAS, MATT and OTT (48.3% to +96.6%, p < 0.023). APE positively modulated synaptic structural dynamics in the aging hippocampus, possibly in a region-specific way. The APE-associated reduction in PS frequency in SMCA1 of old mice suggests that an increasing complement of PS is a compensatory phenomenon to maintain synaptic efficacy. In conclusion, the modulation of synaptic plasticity by APE gives quantitative support to the concept that APE protects from neurodegeneration and improves learning and memory in aging

    Adapted physical exercise enhances activation and differentiation potential of satellite cells in the skeletal muscle of old mice

    No full text
    During ageing, a progressive loss of skeletal muscle mass and a decrease in muscle strength and endurance take place, in the condition termed sarcopenia. The mechanisms of sarcopenia are complex and still unclear; however, it is known that muscle atrophy is associated with a decline in the number and/or efficiency of satellite cells, the main contributors to muscle regeneration. Physical exercise proved beneficial in sarcopenia; however, knowledge of the effect of adapted physical exercise on the myogenic properties of satellite cells in aged muscles is limited. In this study the amount and activation state of satellite cells as well as their proliferation and differentiation potential were assessed in situ by morphology, morphometry and immunocytochemistry at light and transmission electron microscopy on 28-month-old mice submitted to adapted aerobic physical exercise on a treadmill. Sedentary age-matched mice served as controls, and sedentary adult mice were used as a reference for an unperturbed control at an age when the capability of muscle regeneration is still high. The effect of physical exercise in aged muscles was further analysed by comparing the myogenic potential of satellite cells isolated from old running and old sedentary mice using an in vitro system that allows observation of the differentiation process under controlled experimental conditions. The results of this ex vivo and in vitro study demonstrated that adapted physical exercise increases the number and activation of satellite cells as well as their capability to differentiate into structurally and functionally correct myotubes (even though the age-related impairment in myotube formation is not fully reversed): this evidence further supports adapted physical exercise as a powerful, non-pharmacological approach to counteract sarcopenia and the age-related deterioration of satellite cell capabilities even at very advanced age

    Image_1_Modulatory Effect of Aerobic Physical Activity on Synaptic Ultrastructure in the Old Mouse Hippocampus.PDF

    No full text
    <p>Aerobic physical exercise (APE) leads to improved brain functions. To better understand the beneficial effect of APE on the aging brain, a morphometric study was carried out of changes in hippocampal synapses of old (>27 months) Balb/c mice undergoing treadmill training (OTT) for 4 weeks in comparison with old sedentary (OS), middle-aged sedentary (MAS) and middle-aged treadmill training (MATT) mice. The inner molecular layer of the hippocampal dentate gyrus (IMLDG) and the molecular stratum of Ammon’s horn1 neurons (SMCA1) were investigated. The number of synapses per cubic micron of tissue (numeric density, Nv), overall synaptic area per cubic micron of tissue (surface density, Sv), average area of synaptic contact zones (S), and frequency (%) of perforated synapses (PS) were measured in electron micrographs of ethanol-phosphotungstic acid (E-PTA) stained tissue. Data were analyzed with analysis of variance (ANOVA). In IMLDG, an effect of age was found for Nv and Sv, but not S and %PS. Similar results were found for exercise and the interaction of age and exercise. In post hoc analysis Nv was higher (60.6% to 75.1%; p < 0.001) in MATT vs. MAS, OS and OTT. Sv was higher (32.3% to 54.6%; p < 0.001) in MATT vs. MAS, OS and OTT. In SMCA1, age affected Nv, Sv and %PS, but not S. The effect of exercise was significant for Sv only. The interaction of age and exercise was significant for Nv, Sv and %PS. In post hoc analysis Nv was lower in OS vs. MAS, MATT and OTT (−26.1% to −32.1%; p < 0.038). MAS and OTT were similar. Sv was lower in OS vs. MAS, MATT and OTT (−23.4 to −30.3%, p < 0.004). MAS and OTT were similar. PS frequency was higher in OS vs. MAS, MATT and OTT (48.3% to +96.6%, p < 0.023). APE positively modulated synaptic structural dynamics in the aging hippocampus, possibly in a region-specific way. The APE-associated reduction in PS frequency in SMCA1 of old mice suggests that an increasing complement of PS is a compensatory phenomenon to maintain synaptic efficacy. In conclusion, the modulation of synaptic plasticity by APE gives quantitative support to the concept that APE protects from neurodegeneration and improves learning and memory in aging.</p
    corecore