650 research outputs found

    T Cell Anergy: Where It's LAT

    Get PDF

    Annual review of immunology

    Get PDF

    Expression-Based Genome-Wide Association Study Links Vitamin D-Binding Protein With Autoantigenicity in Type 1 Diabetes.

    Get PDF
    Type 1 diabetes (T1D) is caused by autoreactive T cells that recognize pancreatic islet antigens and destroy insulin-producing β-cells. This attack results from a breakdown in tolerance for self-antigens, which is controlled by ectopic antigen expression in the thymus and pancreatic lymph nodes (PLNs). The autoantigens known to be involved include a set of islet proteins, such as insulin, GAD65, IA-2, and ZnT8. In an attempt to identify additional antigenic proteins, we performed an expression-based genome-wide association study using microarray data from 118 arrays of the thymus and PLNs of T1D mice. We ranked all 16,089 protein-coding genes by the likelihood of finding repeated differential expression and the degree of tissue specificity for pancreatic islets. The top autoantigen candidate was vitamin D-binding protein (VDBP). T-cell proliferation assays showed stronger T-cell reactivity to VDBP compared with control stimulations. Higher levels and frequencies of serum anti-VDBP autoantibodies (VDBP-Abs) were identified in patients with T1D (n = 331) than in healthy control subjects (n = 77). Serum vitamin D levels were negatively correlated with VDBP-Ab levels in patients in whom T1D developed during the winter. Immunohistochemical localization revealed that VDBP was specifically expressed in α-cells of pancreatic islets. We propose that VDBP could be an autoantigen in T1D

    Gene Expression Commons: an open platform for absolute gene expression profiling.

    Get PDF
    Gene expression profiling using microarrays has been limited to comparisons of gene expression between small numbers of samples within individual experiments. However, the unknown and variable sensitivities of each probeset have rendered the absolute expression of any given gene nearly impossible to estimate. We have overcome this limitation by using a very large number (>10,000) of varied microarray data as a common reference, so that statistical attributes of each probeset, such as the dynamic range and threshold between low and high expression, can be reliably discovered through meta-analysis. This strategy is implemented in a web-based platform named "Gene Expression Commons" (https://gexc.stanford.edu/) which contains data of 39 distinct highly purified mouse hematopoietic stem/progenitor/differentiated cell populations covering almost the entire hematopoietic system. Since the Gene Expression Commons is designed as an open platform, investigators can explore the expression level of any gene, search by expression patterns of interest, submit their own microarray data, and design their own working models representing biological relationship among samples

    Remix Evaluation: How Do We Know That We Are Succeeding?

    Get PDF
    Juxtaposition Arts received a grant for the Spring of 2007 from the Northside Community Seed Grant committee to provide funding for a graduate research assistant, to formally evaluate and document the planning and implementation work of the past three years of a multi-pronged community university collaborative project called Remix: Creating Places for people on West Broadway. This report includes tools used for the interviews with project stakeholders and notes from the focus groups.Conducted on behalf of Juxtaposition Arts. Supported by the Northside Seed Grant program (NSG), a program of the Center for Urban and Regional Affairs (CURA), University of Minnesota
    • …
    corecore