50 research outputs found

    Thiolated chitosan nanoparticles as a delivery system for antisense therapy: evaluation against EGFR in T47D breast cancer cells

    Get PDF
    Thiolated chitosan has high transfection and mucoadhesive properties. We investigated the potential of two recently synthesized polymers: NAC-C (N-acetyl cysteine-chitosan) and NAP-C (N-acetyl penicillamine-chitosan) in anticancer drug delivery targeting epidermal growth factor receptor (EGFR). Doxorubicin (DOX) and antisense oligonucleotide (ASOND)-loaded polymer nanoparticles were prepared in water by a gelation process. Particle characterization, drug loading, and drug release were evaluated. To verify drug delivery efficiency in vitro experiments on a breast cancer cell line (T47D) were performed. EGFR gene and protein expression was analyzed by real time quantitative polymerase chain reaction and Western blotting, respectively. A loading percentage of 63% ± 5% for ASOND and 70% ± 5% for DOX was achieved. Drug release data after 15 hours showed that ASOND and DOX were completely released from chitosan-based particles while a lower and more sustained release of only 22% ± 8% was measured for thiolated particles. In a cytosol simulated release medium/reducing environment, such as found intracellularly, polymer-based nanoparticles dissociated, liberating approximately 50% of both active substances within 7 hours. ASOND-loaded polymer nanoparticles had higher stability and high mucoadhesive properties. The ASOND-loaded thiolated particles significantly suppressed EGFR gene expression in T47D cells compared with ASOND-loaded chitosan particles and downregulated EGFR protein expression in cells. This study could facilitate future investigations into the functionality of NAP-C and NAC-C polymers as an efficient ASOND delivery system in vitro and in vivo

    Induction of VMAT-1 and TPH-1 Expression Induces Vesicular Accumulation of Serotonin and Protects Cells and Tissue from Cooling/Rewarming Injury

    Get PDF
    DDT1 MF-2 hamster ductus deferens cells are resistant to hypothermia due to serotonin secretion from secretory vesicles and subsequent cystathionine beta synthase (CBS) mediated formation of H2S. We investigated whether the mechanism promoting resistance to hypothermia may be translationally induced in cells vulnerable to cold storage. Thus, VMAT-1 (vesicular monoamino transferase) and TPH-1 (tryptophan hydroxylase) were co-transfected in rat aortic smooth muscle cells (SMAC) and kidney tissue to create a serotonin-vesicular phenotype (named VTSMAC and VTkidney, respectively). Effects on hypothermic damage were assessed. VTSMAC showed a vesicular phenotype and an 8-fold increase in serotonin content and 5-fold increase in its release upon cooling. Cooled VTSMAC produced up to 10 fold higher concentrations of H2S, and were protected from hypothermia, as shown by a 50% reduction of caspase 3/7 activity and 4 times higher survival compared to SMAC. Hypothermic resistance was abolished by the inhibition of CBS activity or blockade of serotonin re-uptake. In VTkidney slices, expression of CBS was 3 fold increased in cold preserved kidney tissue, with two-fold increase in H2S concentration. While cooling induced substantial damage to empty vector transfected kidney as shown by caspase 3/7 activity and loss of FABP1, VTkidney was fully protected and comparable to non-cooled control. Thus, transfection of VMAT-1 and TPH-1 induced vesicular storage of serotonin which is triggered release upon cooling and has protective effects against hypothermia. The vesicular serotonergic phenotype protects against hypothermic damage through re-uptake of serotonin inducing CBS mediated H2S production both in cells and kidney slices

    The relation of TSH and depression in hypothyroid patients

    Get PDF
    Background and aims: Many of hypothyroid patients that are under treatment with levothyroxine. In spite of normal blood level of thyroid hormones, are suffering from depression symptoms that show it is necessary the normal level of TSH should be detected specificially related to depression. Methods: A cross-sectional study was conducted on 174 hypothyroid patients under treatment with levothyroxine who referred to endocrinology clinic with TSH levels of 0.5-5 MIU/L for more than one year. Laboratory tests including TSH, T4 and T3 were performed. Beck depression questionnaire was completed for all patients by trained experts. Based on Beck depression test, scoreless and more than 10 was considered healthy and depressed, respectively. Then, TSH cut-off values based on depression was determined by Roc Curve analysis. Results: 174 hypothyroid patients (Female: 116, Male: 58) with mean age 45.5±11.7 years old were entered to the study. According to Roc Curve analysis, the optimal cut-off value of TSH based on depression was estimated 2.5 MIU/L with 89.66% sensitivity. Conclusion: The present study suggested that a TSH cut-off value for treatment of depression in hypothyroid patients should be based on depression, not just based on population studies. Based on the assessment of depression, our study concludes that a TSH cut-off value of 2.5 MIU/L is optimal. This cut point can provide the greatest effect in terms of depression improvement and quality of life for these patients

    Effect of postnatal environmental enrichment on LTP induction in the CA1 area of hippocampus of prenatally traffic noise-stressed female rats

    Get PDF
    Early-life stress negatively alters mammalian brain programming. Environmental enrichment (EE) has beneficial effects on brain structure and function. This study aimed to evaluate the effects of postnatal environmental enrichment on long-term potentiation (LTP) induction in the hippocampal CA1 area of prenatally stressed female rats. The pregnant Wistar rats were housed in a standard animal room and exposed to traffic noise stress 2 hours/day during the third week of pregnancy. Their offspring either remained intact (ST) or received enrichment (SE) for a month starting from postnatal day 21. The control groups either remained intact (CO) or received enrichment (CE). Basic field excitatory post-synaptic potentials (fEPSPs) were recorded in the CA1 area; then, LTP was induced by high-frequency stimulation. Finally, the serum levels of corticosterone were measured. Our results showed that while the prenatal noise stress decreased the baseline responses of the ST rats when compared to the control rats (P < 0.001), the postnatal EE increased the fEPSPs of both the CE and SE animals when compared to the respective controls. Additionally, high-frequency stimulation (HFS) induced LTP in the fEPSPs of the CO rats (P < 0.001) and failed to induce LTP in the fEPSPs of the ST animals. The enriched condition caused increased potentiation of post-HFS responses in the controls (P < 0.001) and restored the disrupted synaptic plasticity of the CA1 area in the prenatally stressed rats. Likewise, the postnatal EE decreased the elevated serum corticosterone of prenatally stressed offspring (P < 0.001). In conclusion, the postnatal EE restored the stress induced impairment of synaptic plasticity in rats' female offspring

    The role of endogenous H2S formation in reversible remodeling of lung tissue during hibernation in the Syrian hamster

    Get PDF
    During hibernation, small mammals alternate between periods of metabolic suppression and low body temperature ('torpor') and periods of full metabolic recovery with euthermic temperatures ('arousal'). Previously, we demonstrated marked structural remodeling of the lung during torpor, which is rapidly reversed during arousal. We also found that cooling of hamster cells increased endogenous production of H2S through the enzyme cystathionine-beta-synthase (CBS). H2S suppresses the immune response and increases deposition of collagen. Therefore, we examined inflammatory markers and matrix metalloproteinase (MMP) activity in relation to CBS expression and H2S levels in lungs of euthermic and hibernating Syrian hamsters. Lung remodeling during torpor was confirmed by a strong increase in both collagenous and non-collagenous hydroxyproline content. The number of leukocytes in lung was unchanged in any phase of hibernation, while adhesion molecules VCAM-1 and ICAM-1, and the inflammatory marker NF-kappa B (P65) were modestly upregulated in torpor. Gelatinase activity was decreased in lungs from torpid animals, indicating inhibition of the Zn2+-dependent MMP-2 and MMP-9. Moreover, expression of CBS and tissue levels of H2S were increased in torpor. All changes normalized during arousal. Inhibition of gelatinase activity in torpor is likely caused by quenching of Zn2+ by the sulphide ion of H2S. In accord, inhibition of CBS normalized gelatinase activity in torpid animals. Conversely, NaHS decreased the gelatinase activity of euthermic animals, which was attenuated by excess Zn2+. Similar results were obtained on the activity of the Zn2+-dependent angiotensin converting enzyme. Our data indicate that increased production of H2S through CBS in hamster lungs during torpor contributes to remodeling by inhibition of gelatinase activity and possibly by suppression of the inflammatory response. Although administration of H2S is known to induce metabolic suppression in nonhibernating mammals ('suspended animation'), this is the first report implying endogenous H2S production in natural hibernation

    Increased protein aggregation in Zucker Diabetic Fatty rat brain:identification of key mechanistic targets and the therapeutic application of hydrogen sulfide

    Get PDF
    Background: Diabetes and particularly high blood glucose levels are implicated in neurodegeneration. One of the hallmarks of neurodegeneration is protein aggregation. We investigated the presence of protein aggregation in the frontal brain of Zucker diabetic fatty (ZDF) rats, an animal model for diabetes. Further, the effect of NaHS in suppressing protein aggregation in cultured brain slices from ZDF was assessed. Results: The levels of protein synthesis, protein/gene expression, autophagy and anti-oxidant defense were evaluated in ZDF and control (Lean) brains. Compared to Lean, ZDF brains displayed a significant increase in protein aggregates, p-tau, fibronectin expression and protein glycosylation. Increased phosphorylation of mTOR and S6 ribosomal protein in ZDF indicated higher protein synthesis, while the increase in ubiquitinated proteins and LC3-I in ZDF brains accompanied by lower LC3-II expression and LC3-II/LC3-I levels indicated the blockage of proteolytic pathways. CBS (cystathionine beta synthase) protein and mRNA expression and thiol group levels in ZDF brains were lower compared to Lean. ZDF brains show a higher level of reactive oxygen species. In vitro NaHS treatment normalized proteostasis while counteracting oxidative stress. Conclusion: Our data demonstrate increased protein synthesis and aggregation in the diabetic ZDF rat brain, which was reversible by NaHS treatment. This is the first report on the potential use of NaHS as a novel strategy against protein aggregation in diabetic brain

    Reversible remodeling of lung tissue during hibernation in the Syrian hamster

    Get PDF
    During hibernation, small rodents such as hamsters cycle through phases of strongly suppressed metabolism with low body temperature (torpor) and full restoration of metabolism and body temperature (arousal). Remarkably, the repetitive stress of cooling-rewarming and hypoxia does not cause irreversible organ damage. To identify adaptive mechanisms protecting the lungs, we assessed histological changes as well as the expression and localization of proteins involved in tissue remodeling in lungs from Syrian hamsters at different phases of hibernation using immunohistochemical staining and western blot analysis. In torpor (early and late) phase, a reversible increased expression of smooth muscle actin, collagen, angiotensin converting enzyme and transforming growth factor-beta was found, whereas expression of the epidermal growth factor receptor and caveolin-1 was low. Importantly, all these alterations were restored during arousal. This study demonstrates substantial alterations in protein expression mainly in epithelial cells of lungs from hibernating Syrian hamsters. These structural changes of the bronchial airway structure are termed airway remodeling and often occur in obstructive lung diseases such as asthma, chronic obstructive pulmonary disease (COPD) and lung fibrosis. Unraveling the molecular mechanism leading to reversal of airway remodeling by the end of torpor may identify possible therapeutic targets to reduce progression of this process in patients suffering from asthma, chronic obstructive pulmonary disease and lung fibrosis

    How accessibility influences citation counts: The case of citations to the full text articles available from ResearchGate

    Get PDF
    It is generally believed that the number of citations to an article can positively be correlated to its free online availability. In the present study, we investigated the possible impact of academic social networks on the number of citations. We chose the social web service “ResearchGate” as a case. This website acts both as a social network to connect researchers, and at the same time, as an open access repository to publish post-print version of the accepted manuscripts and final versions of open access articles. We collected the data of 1823 articles published by the authors from four different universities. By analyzing these data, we showed that although different levels of full text availability are observed for the four universities, there is always a significant positive correlation between full text availability and the citation count. Moreover, we showed that both post-print version and publisher’s version (i.e., final published version) of the archived manuscripts receive more citations than non-OA articles, and the difference in the citation counts of post-print manuscripts and publisher’s version articles is nonsignificant

    Serotonin and Dopamine Protect from Hypothermia/Rewarming Damage through the CBS/ H2S Pathway

    Get PDF
    Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H2S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H2S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H2S and activation of CBS by Prydoxal 5′-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H2S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H2S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters
    corecore