29 research outputs found
Effects of visual blur on microsaccades during visual exploration
Microsaccades shift the image on the fovea and counteract visual fading. They also serve as an optimal sampling strategy while viewing complex visual scenes. Microsaccade production relies on the amount of retinal error or acuity demand of a visual task. The goal of this study was to assess the effects of blur induced by uncorrected refractive error on visual search. Eye movements were recorded in fourteen healthy subjects with uncorrected and corrected refractive error while they performed a) visual fixation b) blank-scene viewing c) visual search (spot the difference) tasks. Microsaccades, saccades, correctly identified differences and reaction times were analyzed. The frequency of microsaccades and correctly identified differences were lower in the uncorrected refractive error during visual search. No similar change in microsaccades was seen during blank-scene viewing and gaze holding tasks. These findings suggest that visual blur, hence the precision of an image on the fovea, has an important role in calibrating the amplitude of microsaccades during visual scanning
Vergence and Strabismus in Neurodegenerative Disorders
Maintaining proper eye alignment is necessary to generate a cohesive visual image. This involves the coordination of complex neural networks, which can become impaired by various neurodegenerative diseases. When the vergence system is affected, this can result in strabismus and disorienting diplopia. While previous studies have detailed the effect of these disorders on other eye movements, such as saccades, relatively little is known about strabismus. Here, we focus on the prevalence, clinical characteristics, and treatment of strabismus and disorders of vergence in Parkinson’s disease, spinocerebellar ataxia, Huntington disease, and multiple system atrophy. We find that vergence abnormalities may be more common in these disorders than previously thought. In Parkinson’s disease, the evidence suggests that strabismus is related to convergence insufficiency; however, it is responsive to dopamine replacement therapy and can, therefore, fluctuate with medication “on” and “off” periods throughout the day. Diplopia is also established as a side effect of deep brain stimulation and is thought to be related to stimulation of the subthalamic nucleus and extraocular motor nucleus among other structures. In regards to the spinocerebellar ataxias, oculomotor symptoms are common in many subtypes, but diplopia is most common in SCA3 also known as Machado–Joseph disease. Ophthalmoplegia and vergence insufficiency have both been implicated in strabismus in these patients, but cannot fully explain the properties of the strabismus, suggesting the involvement of other structures as well. Strabismus has not been reported as a common finding in Huntington disease or atypical parkinsonian syndromes and more studies are needed to determine how these disorders affect binocular alignment
Pattern Strabismus: Where Does the Brain's Role End and the Muscle's Begin?
Vertically incomitant pattern strabismus comprises 50% of infantile horizontal strabismus. The oblique muscle dysfunction has been associated with pattern strabismus. High-resolution orbit imaging and contemporary neurophysiology studies in non-human primate models of strabismus have shed light into the mechanisms of pattern strabismus. In this review, we will examine our current understanding of etiologies of pattern strabismus. Speculated pathophysiology includes oblique muscle dysfunction, loss of fusion with altered recti muscle pull, displacements and instability in connective tissue pulleys of the recti muscles, vestibular hypofunction, and abnormal neural connections. Orbital mechanical factors, such as abnormal pulleys, were reported as a cause of pattern strabismus in patients with craniofacial anomalies, connective tissue disorders, and late-onset strabismus. In contrast, abnormal neural connections could be responsible for the development of a pattern in infantile-onset strabismus. Pattern strabismus is likely multifactorial. Understanding the mechanisms of pattern strabismus is pivotal to determine an appropriate surgical treatment strategy for these patients
Novel Eye Movement Disorders in Whipple’s Disease—Staircase Horizontal Saccades, Gaze-Evoked Nystagmus, and Esotropia
Whipple’s disease, a rare systemic infectious disorder, is complicated by the involvement of the central nervous system in about 5% of cases. Oscillations of the eyes and the jaw, called oculo-masticatory myorhythmia, are pathognomonic of the central nervous system involvement but are often absent. Typical manifestations of the central nervous system Whipple’s disease are cognitive impairment, parkinsonism mimicking progressive supranuclear palsy with vertical saccade slowing, and up-gaze range limitation. We describe a unique patient with the central nervous system Whipple’s disease who had typical features, including parkinsonism, cognitive impairment, and up-gaze limitation; but also had diplopia, esotropia with mild horizontal (abduction more than adduction) limitation, and vertigo. The patient also had gaze-evoked nystagmus and staircase horizontal saccades. Latter were thought to be due to mal-programmed small saccades followed by a series of corrective saccades. The saccades were disconjugate due to the concurrent strabismus. Also, we noted disconjugacy in the slow phase of gaze-evoked nystagmus. The disconjugacy of the slow phase of gaze-evoked nystagmus was larger during monocular viewing condition. We propose that interaction of the strabismic drifts of the covered eyes and the nystagmus drift, putatively at the final common pathway might lead to such disconjugacy
Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function
Discovery of inter-latching circuits in the basal ganglia and invention of deep brain stimulation (DBS) for their modulation is a breakthrough in basic and clinical neuroscience. The DBS not only changes the quality of life of hundreds of thousands of people with intractable movement disorders, but it also offers a unique opportunity to understand how the basal ganglia interacts with other neural structures. An attractive yet less explored area is the study of DBS on eye movements and vestibular function. From the clinical perspective such studies provide valuable guidance in efficient programming of stimulation profile leading to optimal motor outcome. From the scientific standpoint such studies offer the ability to assess the outcomes of basal ganglia stimulation on eye movement behavior in cognitive as well as in motor domains. Understanding the influence of DBS on ocular motor function also leads to analogies to interpret its effects on complex appendicular and axial motor function. This review focuses on the influence of globus pallidus, subthalamic nucleus, and thalamus DBS on ocular motor and vestibular functions. The anatomy and physiology of basal ganglia, pertinent to the principles of DBS and ocular motility, is discussed. Interpretation of the effects of electrical stimulation of the basal ganglia in Parkinson's disease requires understanding of baseline ocular motor function in the diseased brain. Therefore we have also discussed the baseline ocular motor deficits in these patients and how the DBS changes such functions
Fixational saccades are more disconjugate in adults than in children - Fig 2
<p>(A) Distribution of microsaccade amplitude, when saccades were identified using clustering algorithm proposed by Otero-Millan et al. (2014). A normalized number of microsaccades are plotted on the y-axis, while x-axis depicts the amplitude of microsaccades in degrees. Red lines depict the distribution of microsaccades in adults, while blue lines depict children. The two distributions were significantly different (Two-sample Kolmogorov-Smirnov test p<0.0001). (B) Kinematic properties of microsaccades quantified in the main-sequence analysis. Eye velocities are plotted on the y-axis while the corresponding positions are plotted on the x-axis. Each data point depicts one saccade. Blue symbols illustrate children, while red data points are adults. (C) Comparison of the amplitude disconjugacy and (D) directional disconjugacy of fixational saccades. In both panels, the right eye is plotted on y-axis while the left eye is plotted on the x-axis. Red symbols depict adults, while children are shown in blue data points. Grey line is an equality line. The red points, suggesting adults, have larger scatter showing more amplitude and directional disconjugacy compared to pediatric patients. </p
Effects of Deep Brain Stimulation on Eye Movements and Vestibular Function
Discovery of inter-latching circuits in the basal ganglia and invention of deep brain stimulation (DBS) for their modulation is a breakthrough in basic and clinical neuroscience. The DBS not only changes the quality of life of hundreds of thousands of people with intractable movement disorders, but it also offers a unique opportunity to understand how the basal ganglia interacts with other neural structures. An attractive yet less explored area is the study of DBS on eye movements and vestibular function. From the clinical perspective such studies provide valuable guidance in efficient programming of stimulation profile leading to optimal motor outcome. From the scientific standpoint such studies offer the ability to assess the outcomes of basal ganglia stimulation on eye movement behavior in cognitive as well as in motor domains. Understanding the influence of DBS on ocular motor function also leads to analogies to interpret its effects on complex appendicular and axial motor function. This review focuses on the influence of globus pallidus, subthalamic nucleus, and thalamus DBS on ocular motor and vestibular functions. The anatomy and physiology of basal ganglia, pertinent to the principles of DBS and ocular motility, is discussed. Interpretation of the effects of electrical stimulation of the basal ganglia in Parkinson's disease requires understanding of baseline ocular motor function in the diseased brain. Therefore we have also discussed the baseline ocular motor deficits in these patients and how the DBS changes such functions