176 research outputs found

    Untangling the ATR-CHEK1 network for prognostication, prediction and therapeutic target validation in breast cancer

    Get PDF
    Background: ATR-Chk1 signalling network is critical for genomic stability. ATR-Chk1 may be deregulated in breast cancer and have prognostic, predictive and therapeutic significance. Patients and methods: We investigated ATR and phosphorylated CHK1Ser345 protein (pChk1) expression in 1712 breast cancers (Nottingham Tenovus series). ATR and Chk1 mRNA were evaluated in 1950 breast cancers (METABRIC cohort). Pre-clinically, biological consequences of ATR gene knockdown or ATR inhibition by small molecule inhibitor (VE-821) were investigated in MCF-7 and MDA-MB-231 breast cancer cell lines and in non-tumorigenic breast epithelial cells (MCF10A). Results: High ATR and high cytoplasmic pChk1 expression was significantly associated with higher tumour stage, higher mitotic index, pleomorphism and lymphovascular invasion. In univariate analysis, high ATR and high cytoplasmic pChk1 protein expression was associated with shorter breast cancer specific survival (BCSS). In multivariate analysis, high ATR remains an independent predictor of adverse outcome. At the mRNA level, high Chk1 remains associated with aggressive phenotypes including lymph node positivity, high grade, Her-2 overexpression, triple-negative phenotype and molecular classes associated with aggressive behaviour and shorter survival.. Pre-clinically, Chk1 phosphorylation at serine 345 following replication stress (induced by gemcitabine or hydroxyurea treatment) was impaired in ATR knockdown and in VE-821 treated breast cancer cells. Doxycycline inducible knockdown of ATR suppressed growth, which was restored when ATR was re-expressed. Similarly, VE-821 treatment resulted in a dose dependent suppression of cancer cell growth and survival (MCF7 and MDA-MB-231) but had no effect on non-tumorigenic breast epithelial cells (MCF10A). Conclusions: We provides evidence that ATR and Chk1 are promising biomarkers and rational drug target for personalized therapy in breast cancer

    Targeting BRCA1-BER deficient breast cancer by ATM or DNA-PKcs blockade either alone or in combination with cisplatin for personalized therapy

    Get PDF
    BRCA1, a key factor in homologous recombination repair may also regulate base excision repair (BER). Targeting BRCA1-BER deficient cells by blockade of ATM and DNA-PKcs could be a promising strategy in breast cancer. We investigated BRCA1, XRCC1 and pol β protein expression in two cohorts (n=1602 sporadic and n=50 germ-line BRCA1 mutated) and mRNA expression in two cohorts (n=1952 and n=249). Artificial neural network analysis for BRCA1-DNA repair interacting genes was conducted in 249 tumours. Pre-clinically, BRCA1 proficient and deficient cells were DNA repair expression profiled and evaluated for synthetic lethality using ATM and DNA-PKcs inhibitors either alone or in combination with cisplatin. In human tumours, BRCA1 negativity was strongly associated with low XRCC1, and low pol β at mRNA and protein levels (p<0.0001). In patients with BRCA1 negative tumours, low XRCC1 or low pol β expression was significantly associated with poor survival in univariate and multivariate analysis compared to high XRCC1 or high pol β expressing BRCA1 negative tumours (ps<0.05). Pre-clinically, BRCA1 negative cancer cells exhibit low mRNA and low protein expression of XRCC1 and pol β. BRCA1-BER deficient cells were sensitive to ATM and DNA-PKcs inhibitor treatment either alone or in combination with cisplatin and synthetic lethality was evidenced by DNA double strand breaks accumulation, cell cycle arrest and apoptosis. We conclude that XRCC1 and pol β expression status in BRCA1 negative tumours may have prognostic significance. BRCA1-BER deficient cells could be targeted by ATM or DNA-PKcs inhibitors for personalized therapy

    HAGE (DDX43) is a biomarker for poor prognosis and a predictor of chemotherapy response in breast cancer

    Get PDF
    Background: HAGE protein is a known immunogenic cancer-specific antigen. Methods: The biological, prognostic and predictive values of HAGE expression was studied using immunohistochemistry in three cohorts of patients with BC (n=2147): early primary (EP-BC; n=1676); primary oestrogen receptor-negative (PER-BC; n=275) treated with adjuvant anthracycline-combination therapies (Adjuvant-ACT); and primary locally advanced disease (PLA-BC) who received neo-adjuvant anthracycline-combination therapies (Neo-adjuvant-ACT; n=196). The relationship between HAGE expression and the tumour-infiltrating lymphocytes (TILs) in matched prechemotherapy and postchemotherapy samples were investigated. Results: Eight percent of patients with EP-BC exhibited high HAGE expression (HAGEþ) and was associated with aggressive clinico-pathological features (Ps<0.01). Furthermore, HAGEþexpression was associated with poor prognosis in both univariate and multivariate analysis (Ps<0.001). Patients with HAGE+ did not benefit from hormonal therapy in high-risk ER-positive disease. HAGE+ and TILs were found to be independent predictors for pathological complete response to neoadjuvant-ACT; P<0.001. A statistically significant loss of HAGE expression following neoadjuvant-ACT was found (P=0.000001), and progression-free survival was worse in those patients who had HAGE+ residual disease (P=0.0003). Conclusions: This is the first report to show HAGE to be a potential prognostic marker and a predictor of response to ACT in patients with BC

    Mapping ergonomics application to improve SMEs working condition in industrially developing countries: a critical review

    Get PDF
    In industrially developing countries (IDC), small and medium enterprises (SMEs) account for the highest proprotion of employment. Unfortunately, the working conditions in SMEs are often very poor and expose employees to a potentially wide range of health and safety risks. This paper presents a comprehensive review of 161 articles related to ergonomics application in SMEs, using Indonesia as a case study. The aim of this paper is to investigate the extent of ergonomics application and identify areas that can be improved to promote effective ergonomics for SMEs in IDC. The most urgent issue found is the need for adopting participatory approach in contrast to the commonly implemented top-down approach. Some good practices in ergonomics application were also revealed from the review, e.g. a multidisciplinary approach, unsophisticated and low-cost solutions, and recognising the importance of productivity. The review also found that more work is still required to achieve appropriate cross-cultural adaptation of ergonomics application. Practitioner Summary: Despite continuous efforts in addressing ergonomics issues in SMEs of IDC, workers are still exposed to poor work conditions. We reviewed factual-based evidence of current ergonomics application to inform future strategies of ergonomics in IDC, using Indonesia as a case study

    MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer

    Get PDF
    Cell–cell adhesions constitute the structural “glue” that retains cells together and contributes to tissue organisation and physiological function. The integrity of these structures is regulated by extracellular and intracellular signals and pathways that act on the functional units of cell adhesion such as the cell adhesion molecules/adhesion receptors, the extracellular matrix (ECM) proteins and the cytoplasmic plaque/peripheral membrane proteins. In advanced cancer, these regulatory pathways are dysregulated and lead to cell–cell adhesion disassembly, increased invasion and metastasis. The Metastasis suppressor protein 1 (MTSS1) plays a key role in the maintenance of cell–cell adhesions and its loss correlates with tumour progression in a variety of cancers. However, the mechanisms that regulate its function are not well-known. Using a system biology approach, we unravelled potential interacting partners of MTSS1. We found that the secretory carrier-associated membrane protein 1 (SCAMP1), a molecule involved in post-Golgi recycling pathways and in endosome cell membrane recycling, enhances Mtss1 anti-invasive function in HER2+/ER−/PR− breast cancer, by promoting its protein trafficking leading to elevated levels of RAC1-GTP and increased cell–cell adhesions. This was clinically tested in HER2 breast cancer tissue and shown that loss of MTSS1 and SCAMP1 correlates with reduced disease-specific survival. In summary, we provide evidence of the cooperative roles of MTSS1 and SCAMP1 in preventing HER2+/ER−/PR− breast cancer invasion and we show that the loss of Mtss1 and Scamp1 results in a more aggressive cancer cell phenotype

    Ankyrin-B dysfunction predisposes to arrhythmogenic cardiomyopathy and is amenable to therapy

    Get PDF
    Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal \u3b2-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and \u3b2-catenin. A pharmacological activator of the WNT/\u3b2-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and \u3b2-catenin, and evidence for targeted activation of the WNT/\u3b2-catenin pathway as a potential treatment for this disease

    High nuclear MSK1 is associated with longer survival in breast cancer patients

    Get PDF
    Purpose: Mitogen- and stress- activated kinases (MSKs) are important substrates of the mitogen-activated protein kinase (MAPK)-activated protein kinase family. MSK1 and MSK2 are both nuclear serine/threonine protein kinases, with MSK1 being suggested to potentially play a role in breast cancer cell proliferation, cell cycle progression, cell migration, invasion and tumour growth. The aim of the current study was to assess MSK1 protein expression in breast cancer tumour specimens, evaluating its prognostic significance. Methods: A large cohort of 1902 early stage invasive breast cancer patients was used to explore the expression of MSK1. Protein expression was examined using standard immunohistochemistry on tissue microarrays. Results: Low MSK1 protein expression was associated with younger age (P=0.004), higher tumour grade (P<0.001), higher Nottingham Prognostic Index scores (P=0.007), negative ER (P<0.001) and PR (P<0.001) status, and with triple-negative (P<0.001) and basal-like (P<0.001) phenotypes. Low MSK1 protein expression was significantly associated with shorter time to distant metastasis (P<0.001), and recurrence (P=0.013) and early death due to breast cancer (P=0.01). This association between high MSK1 expression and improved breast cancer-specific survival was observed in the whole cohort (P=0.009) and in the HER2 negative and non-basal like tumours (P=0.006 and P=0.024, respectively). Multivariate analysis including other prognostic variables indicated that MSK1 is not an independent marker of outcome. Conclusions: High MSK1 is associated with improved breast cancer-specific survival in early stage invasive breast cancer patients, and has additional prognostic value in HER2 negative and non-basal like disease. Although not an independent marker of outcome we believe such findings, and significant associations with well-established negative prognostic factors (age, grade, Nottingham Prognostic Index, hormone receptor status, time to distant metastasi

    Comparative Analyses of SUV420H1 Isoforms and SUV420H2 Reveal Differences in Their Cellular Localization and Effects on Myogenic Differentiation

    Get PDF
    Methylation of histone H4 on lysine 20 plays critical roles in chromatin structure and function via mono- (H4K20me1), di- (H4K20me2), and trimethyl (H4K20me3) derivatives. In previous analyses of histone methylation dynamics in mid-gestation mouse embryos, we documented marked changes in H4K20 methylation during cell differentiation. These changes were particularly robust during myogenesis, both in vivo and in cell culture, where we observed a transition from H4K20me1 to H4K20me3. To assess the significance of this change, we used a gain-of-function strategy involving the lysine methyltransferases SUV420H1 and SUV420H2, which catalyze H4K20me2 and H4K20me3. At the same time, we characterized a second isoform of SUV420H1 (designated SUV420H1_i2) and compared the activity of all three SUV420H proteins with regard to localization and H4K20 methylation.Immunofluorescence revealed that exogenous SUV420H1_i2 was distributed throughout the cell, while a substantial portion of SUV420H1_i1 and SUV420H2 displayed the expected association with constitutive heterochromatin. Moreover, SUV420H1_i2 distribution was unaffected by co-expression of heterochromatin protein-1α, which increased the targeting of SUV420H1_i1 and SUV420H2 to regions of pericentromeric heterochromatin. Consistent with their distributions, SUV420H1_i2 caused an increase in H4K20me3 levels throughout the nucleus, whereas SUV420H1_i1 and SUV420H2 facilitated an increase in pericentric H4K20me3. Striking differences continued when the SUV420H proteins were tested in the C2C12 myogenic model system. Specifically, although SUV420H1_i2 induced precocious appearance of the differentiation marker Myogenin in the presence of mitogens, only SUV420H2 maintained a Myogenin-enriched population over the course of differentiation. Paradoxically, SUV420H1_i1 could not be expressed in C2C12 cells, which suggests it is under post-transcriptional or post-translational control.These data indicate that SUV420H proteins differ substantially in their localization and activity. Importantly, SUV420H2 can induce a transition from H4K20me1 to H4K20me3 in regions of constitutive heterochromatin that is sufficient to enhance myogenic differentiation, suggesting it can act an as epigenetic ‘switch’ in this process

    Reverse-Phase Phosphoproteome Analysis of Signaling Pathways Induced by Rift Valley Fever Virus in Human Small Airway Epithelial Cells

    Get PDF
    Rift valley fever virus (RVFV) infection is an emerging zoonotic disease endemic in many countries of sub-Saharan Africa and in Egypt. In this study we show that human small airway epithelial cells are highly susceptible to RVFV virulent strain ZH-501 and the attenuated strain MP-12. We used the reverse-phase protein arrays technology to identify phosphoprotein signaling pathways modulated during infection of cultured airway epithelium. ZH-501 infection induced activation of MAP kinases (p38, JNK and ERK) and downstream transcriptional factors [STAT1 (Y701), ATF2 (T69/71), MSK1 (S360) and CREB (S133)]. NF-κB phosphorylation was also increased. Activation of p53 (S15, S46) correlated with the increased levels of cleaved effector caspase-3, -6 and -7, indicating activation of the extrinsic apoptotic pathway. RVFV infection downregulated phosphorylation of a major anti-apoptotic regulator of survival pathways, AKT (S473), along with phosphorylation of FOX 01/03 (T24/31) which controls cell cycle arrest downstream from AKT. Consistent with this, the level of apoptosis inhibitor XIAP was decreased. However, the intrinsic apoptotic pathway marker, caspase-9, demonstrated only a marginal activation accompanied by an increased level of the inhibitor of apoptosome formation, HSP27. Concentration of the autophagy marker, LC3B, which often accompanies the pro-survival signaling, was decreased. Cumulatively, our analysis of RVFV infection in lung epithelium indicated a viral strategy directed toward the control of cell apoptosis through a number of transcriptional factors. Analyses of MP-12 titers in challenged cells in the presence of MAPK inhibitors indicated that activation of p38 represents a protective cell response while ERK activation controls viral replication

    Tumour expression of leptin is associated with chemotherapy resistance and therapy-independent prognosis in gastro-oesophageal adenocarcinomas

    Get PDF
    Background: Cytotoxic chemotherapy remains the main systemic therapy for gastro-oesophageal adenocarcinoma, but resistance to chemotherapy is common, resulting in ineffective and often toxic treatment for patients. Predictive biomarkers for chemotherapy response would increase the probability of successful therapy, but none are currently recommended for clinical use. We used global gene expression profiling of tumour biopsies to identify novel predictive biomarkers for cytotoxic chemotherapy. Methods: Tumour biopsies from patients (n=14) with TNM stage IB–IV gastro-oesophageal adenocarcinomas receiving platinum-based combination chemotherapy were used as a discovery cohort and profiled with Affymetrix ST1.0 Exon Genechips. An independent cohort of patients (n=154) treated with surgery with or without neoadjuvant platinum combination chemotherapy and gastric adenocarcinoma cell lines (n=22) were used for qualification of gene expression profiling results by immunohistochemistry. A cisplatin-resistant gastric cancer cell line, AGS Cis5, and the oesophageal adenocarcinoma cell line, OE33, were used for in vitro validation investigations. Results: We identified 520 genes with differential expression (Mann–Whitney U, P<0.020) between radiological responding and nonresponding patients. Gene enrichment analysis (DAVID v6.7) was used on this list of 520 genes to identify pathways associated with response and identified the adipocytokine signalling pathway, with higher leptin mRNA associated with lack of radiological response (P=0.011). Similarly, in the independent cohort (n=154), higher leptin protein expression by immunohistochemistry in the tumour cells was associated with lack of histopathological response (P=0.007). Higher leptin protein expression by immunohistochemistry was also associated with improved survival in the absence of neoadjuvant chemotherapy, and patients with low leptin protein-expressing tumours had improved survival when treated by neoadjuvant chemotherapy (P for interaction=0.038). In the gastric adenocarcinoma cell lines, higher leptin protein expression was associated with resistance to cisplatin (P=0.008), but not to oxaliplatin (P=0.988) or 5fluorouracil (P=0.636). The leptin receptor antagonist SHLA increased the sensitivity of AGS Cis5 and OE33 cell lines to cisplatin. Conclusions: In gastro-oesophageal adenocarcinomas, tumour leptin expression is associated with chemoresistance but a better therapy-independent prognosis. Tumour leptin expression determined by immunohistochemistry has potential utility as a predictive marker of resistance to cytotoxic chemotherapy, and a prognostic marker independent of therapy in gastro-oesophageal adenocarcinoma. Leptin antagonists have been developed for clinical use and leptin and its associated pathways may also provide much needed novel therapeutic targets for gastro-oesophageal adenocarcinoma
    corecore