2,659 research outputs found

    Growth hormone secretion during space flight and evaluation of the physiological responses of animals held in the research animal holding facility

    Get PDF
    The spaceflight of the Research Animal Holding Facility (RAHF) on the Space Laboratory 3 (SL 3) provided the opportunity to evaluate the suitability of the RAHF for housing and maintaining experimental animals during spaceflight, and to determine changes in the secretion of growth hormone during spaceflight. Using ground-based studies the following were investigated: the optimum conditions for creating gravitational force on space flight animals; neural pathways that may play a role in the space flight syndrome; and the time course of muscle atrophy due to hypodynamia and hypokenesia in hindlimb-suspended animals and the role of growth hormone in these processes

    Cardiac output and regional blood flow in conscious rats exposed to acute hypoxia

    Get PDF
    Cardiac output and regional blood flow in conscious rats exposed to acute hypoxi

    Fundamental results from microgravity cell experiments with possible commericial applications

    Get PDF
    Some of the major milestones are presented for studies in cell biology that were conducted by the Soviet Union and the United States in the upper layers of the atmosphere and in outer space for more than thirty-five years. The goals have changed as new knowledge is acquired and the priorities for the use of microgravity have shifted toward basic research and commercial applications. Certain details concerning the impact of microgravity on cell systems is presented. However, it needs to be emphasized that in planning and conducting microgravity experiments, there are some important prerequisites not normally taken into account. Apart from the required background knowledge of previous microgravity and ground-based experiments, the investigator should have the understanding of the hardware as a physical unit, the complete knowledge of its operation, the range of its capabilities and the anticipation of problems that may occur. Moreover, if the production of commercial products in space is to be manifested, data obtained from previous microgravity experiments must be used to optimize the design of flight hardware

    Cells in Space

    Get PDF
    Discussions and presentations addressed three aspects of cell research in space: the suitability of the cell as a subject in microgravity experiments, the requirements for generic flight hardware to support cell research, and the potential for collaboration between academia, industry, and government to develop these studies in space. Synopses are given for the presentations and follow-on discussions at the conference and papers are presented from which the presentations were based. An Executive Summary outlines the recommendations and conclusions generated at the conference

    CoGeNT: A Search for Low-Mass Dark Matter using p-type Point Contact Germanium Detectors

    Full text link
    CoGeNT employs p-type point-contact (PPC) germanium detectors to search for Weakly Interacting Massive Particles (WIMPs). By virtue of its low energy threshold and ability to reject surface backgrounds, this type of device allows an emphasis on low-mass dark matter candidates (wimp mass of about 10 GeV/c2). We report on the characteristics of the PPC detector presently taking data at the Soudan Underground Laboratory, elaborating on aspects of shielding, data acquisition, instrumental stability, data analysis, and background estimation. A detailed background model is used to investigate the low energy excess of events previously reported, and to assess the possibility of temporal modulations in the low-energy event rate. Extensive simulations of all presently known backgrounds do not provide a viable background explanation for the excess of low-energy events in the CoGeNT data, or the previously observed temporal variation in the event rate. Also reported on for the first time is a determination of the surface (slow pulse rise time) event contamination in the data as a function of energy. We conclude that the CoGeNT detector technology is well suited to search for the annual modulation signature expected from dark matter particle interactions in the region of WIMP mass and coupling favored by the DAMA/LIBRA resultsComment: 20 pages, 31 figures. Several figures have been added, including an updated allowed region (both 90% and 99% confidence level contours) based on this analysis. There is also the addition of a Pb-210 background estimat

    Results from a Search for Light-Mass Dark Matter with a P-type Point Contact Germanium Detector

    Get PDF
    We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.Comment: 4 pages, 4 figures. v2: submitted version. Minimal changes in wording, one reference adde

    Absence of lattice strain anomalies at the electronic topological transition in zinc at high pressure

    Full text link
    High pressure structural distortions of the hexagonal close packed (hcp) element zinc have been a subject of controversy. Earlier experimental results and theory showed a large anomaly in lattice strain with compression in zinc at about 10 GPa which was explained theoretically by a change in Fermi surface topology. Later hydrostatic experiments showed no such anomaly, resulting in a discrepancy between theory and experiment. We have computed the compression and lattice strain of hcp zinc over a wide range of compressions using the linearized augmented plane wave (LAPW) method paying special attention to k-point convergence. We find that the behavior of the lattice strain is strongly dependent on k-point sampling, and with large k-point sets the previously computed anomaly in lattice parameters under compression disappears, in agreement with recent experiments.Comment: 9 pages, 6 figures, Phys. Rev. B (in press
    corecore