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Abstract.   
 
 

We report the results of an intercomparison of vertical column amounts of hydrogen 

chloride (HCl), hydrogen fluoride (HF), nitrous oxide (N2O), nitric acid (HNO3), methane (CH4), 

ozone (O3), carbon dioxide (CO2) and nitrogen (N2) derived from the spectra recorded by two 

ground-based Fourier transform infrared (FTIR) spectrometers operated side-by-side using the 

sun as a source. The procedure used to record spectra and derive vertical column amounts 

follows the format of previous instrument intercomparisons organised by the Network for 

Detection of Atmospheric Composition Change (NDACC), formerly known as the Network for 

Detection of Stratospheric Change (NDSC).  

For most gases the differences were typically around 3% and in about half of the results 

the error bars given by the standard deviation of the measurements from each instrument did not 

overlap. The worst level of agreement was for HF where differences of over 5% were typical. 

The level of agreement achieved during this intercomparison is a little worse than that achieved 

in previous intercomparisons between ground-based FTIR spectrometers.  

 

Keywords: Fourier transform, FTIR, intercomparison, atmospheric spectroscopy, trace 

gases, remote sensing 
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1. Introduction 
 

The Network for Detection of Atmospheric Composition Change (NDACC)(Kurylo 1991) is 

a global network of ground-based remote sensing stations, using predominantly spectroscopic 

techniques to measure the chemical composition of the atmosphere. Originally focused on the 

detection and characterisation of long-term trends in stratospheric ozone and gases involved in 

ozone chemistry, the NDACC now also provides measurements of predominantly tropospheric 

trace gases as well as a coordinated resource for comparison and calibration of satellite-borne 

instruments for atmospheric composition measurements.  Further details can be obtained from 

the NDACC web site, http://www.ndsc.ncep.noaa.gov . 

In order to ensure the quality of the measurements, the NDACC stipulates a validation 

protocol (Kurylo 1997) to be followed by all instruments, of which the intercomparison of 

instruments forms a pivotal role. Previous NDACC FTIR instrument intercomparisons 

(Goldman; Paton-Walsh et al. 1999: Griffith; Jones et al. 2003: Meier; Paton-Walsh et al. 2005: 

Walsh; Bell et al. 1997) have yielded typical levels of agreement of 1-2% for tropospheric gases 

such as N2O and CO2, and agreement of 2-3% for stratospheric compounds such as HCl, HNO3 

and HF, with some instances of worse levels of agreement. The results of these earlier 

intercomparisons underlined the importance of a thorough knowledge of the spectrometer’s 

instrumental line shape (ILS). More recently, better techniques have been developed to 

characterise the ILS using low-pressure gas cells, which have been adopted by all members of 

the infrared working group of the NDACC (Hase; Blumenstock et al. 1999) and were used to 

help characterise the two instruments’ performance prior to starting the intercomparison. This 

intercomparison is the first to include a spectrometer built by the commercial company 
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“Bomem”. It is also unique in the sense that each different location presents different 

measurement challenges – the Arctic springtime provides an atmosphere that is rapidly varying 

with time and airmass. 

2. Format of the Intercomparison 
 

The FTIR intercomparison described here was conducted at Environment Canada’s (EC) 

laboratory in Eureka, Nunavut during April and May in 1999. The facility is located at 80.05˚N, 

86.42˚W, 610 metres above mean sea level. The Bomem DA8 interferometer permanently 

installed at Eureka was compared with the mobile BRUKER 120M operated by the National 

Physical Laboratory (NPL). Further details of the operation of these spectrometers can be found 

in the literature(Bell; PatonWalsh et al. 1996: Bell; Walsh et al. 1998: Kerzenmacher; Walker et 

al. 2005: Mahieu; Zander et al. 2005: Wiacek; Jones et al. 2006: Farahani; Fast et al. 2007).  The 

two spectrometers were operated on the same floor within 2m of each other, using separate solar 

trackers. Spectra were recorded nearly simultaneously except that the EC instrument records 

only when the mirror scans away from the zero path difference position whilst the NPL 

instrument records in both directions of the moving mirror. So the time taken to record a single 

spectrum is similar for both spectrometers, but two spectra were recorded on the NPL instrument 

for each EC spectrum. Simultaneous measurement is of particular importance at such high 

latitudes as the species of interest are known to vary quite rapidly in short time scales(Bell; 

Walsh et al. 1998). 

The intercomparison consisted of an “open” phase, when the performance of the instruments 

and the results of analysis of the spectra could be openly discussed, and a “blind” phase when no 

exchange of information was permitted between the two groups. The results of analysis of 
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spectra recorded in this blind phase were sent to an independent referee (A. Meier) for collation 

and comparison. 

3. Preparation of the Spectrometers 
 

Both spectrometers were equipped with an indium-antimonide (InSb) detector and a mercury 

cadmium telluride (MCT) detector. The NPL instrument used a potassium bromide (KBr) 

beamsplitter with the MCT detector and an optical filter with a band-pass from 700cm-1 to 

1050cm-1. A calcium fluoride (CaF2) beamsplitter was used with the NPL InSb detector along 

with three optical filters with a band-passes from 2000cm-1 to 2600cm-1; 2400cm-1 to 3200cm-1; 

and 3950cm-1 to 4400cm-1. The EC instrument used a KBr beamsplitter for both detectors and 

the following band-pass filters:  650cm-1 to 1250cm-1; 2400cm-1 to 3100cm-1; 2750cm-1 to 

3100cm-1 and 3950cm-1 to 4300cm-1 .  

After the NPL mobile spectrometer had been re-assembled and installed alongside the EC 

spectrometer, the alignment of each instrument was tested using low-pressure gas cells. A glass 

cell with KBr windows containing a low pressure of either N2O or HBr gas was placed in the 

beam of the spectrometer. The first cell used was 2cm in length, containing 2mbar of HBr. The 

second cell was 5cm in length with 0.8mbars of N2O. Spectra were recorded with each 

instrument’s InSb detector using the HBr cell with either an internal infra-red source or the sun. 

Other spectra were recorded on the MCT and InSb detectors using the N2O cell and the internal 

infra-red source. All these spectra were analysed using LINEFIT (Hase; Blumenstock et al. 

1999) to derive two parameters that describe the instrumental line-shape (ILS). The first 

parameter is the modulation efficiency at maximum optical path difference (250cm for the 

Bomem and 257 cm for the Bruker) and the second parameter is the phase error, a measure of the 

asymmetry of the ILS. For measurements on both instruments and both detectors the phase error 

 - 5 - 



derived was small with a large standard deviation in the results from different lines and spectra 

used in the analyses. The modulation efficiency at maximum optical path difference was much 

more consistent with a mean and standard deviation of 0.85 ± 0.06 for the EC Bomem DA8 

spectrometer and 0.87 ± 0.04 for the NPL Bruker 120M spectrometer. These results are typical 

of what can be achieved with these particular instruments and the participants were therefore 

satisfied that the spectrometers were well aligned, free from unusual problems and ready for the 

intercomparison to begin. 

4. Spectral Analysis 
Vertical column amounts were derived from each individual spectrum by iteratively 

adjusting the concentration of the target gas in a simulated spectral interval until the difference 

between the measured and simulated spectrum was minimised.  The simulated spectrum was 

generated using spectral line parameters from the HITRAN 1996 compilation (Rothman; 

Rinsland et al. 1998) with solar lines simulated as described in (Rinsland; Jones et al. 1998).  A 

layered model of the atmosphere was used, with the pressure, temperature and an initial 

concentration (or volume mixing ratio) for each gas assigned for every layer. The iterative fitting 

algorithm was constrained to allow only a scaling of the concentration profile for each gas (i.e. 

the concentration of the gas was multiplied by a single factor applied to all layers of the model). 

An ideal ILS (100% modulation at maximum optical path difference and zero phase error) was 

assumed for the two instruments in the analysis.   Both groups used an identical algorithm to 

perform this non-linear iterative fitting, namely the SFIT spectral fitting code, version 1.09e. 

A large effort was made to ensure that the ancillary data and spectral fitting parameters 

used by both groups were identical. The pressure and temperature (PT) data were taken from the 

radio sonde launched daily at 11 UT from the Eureka weather station.  These were then splined 

with data from the National Center for Environmental Prediction (NCEP) assimilated for 
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Eureka’s location and with a standard sub-arctic PT profile to produce a PT profile to be used by 

both groups. The initial concentration profiles for each day were generated by adjusting a 

standard set using a tropopause height estimated from the PT profile. The use of a single set of 

reference concentration profiles for all days (as had been done in earlier intercomparisons) was 

not practical because the airmass above Eureka in spring can be highly variable due to the effects 

of subsidence and the movement of the polar vortex relative to the site.  

Table 1: The observation windows agreed upon for the analysis of key molecules. The last 
column lists interfering molecules that were taken into account in the analysis. Molecules that 
were actively fitted are indicated by an (F). Molecules which were pre-scaled to a total column 
amount retrieved in another, interference free, micro-window and held constant in the final 
retrieval for species are marked (C). 
 

 
Principal 
Molecule 

 
Fit Region 

(cm-1) 

 
Other Gases Included 
C-Const(fixed)  F-Fitted 

 
HF 

 
4038.70-4039.18 

 
H2O (F), CH4 (F), solar (F), HDO (C) 

 
HCl 

 
2925.70-2926.10 

 
CH4 (C), H2O(C), NO2 (F) 

 
O3 

 
2775.78 –2775.88

 
HCl (F), N2O (F), CH4(F) 

 
CH4 

 
2903.48-2904.20 

 
H2O(F), HCl(F), HDO(F)  

 
CH4 

 
2835.40-2835.87 

 
HDO (F) 

 
N2O 

 
2806.00-2806.80 

 
CH4(F) 

 
N2O 

 
2481.12-2482.50 

 
CO2(F), CH4 (F) 

 
N2 

 
2418.40-2418.90 

 
solar (F) 

 
HNO3 

 
867.00-869.30 

 
NH3 (F)  

 
HNO3 

 
872.25-874.80 

 
H2O (F)  

 
CO2 

 
2626.20-2627.06 

 
HDO(C), CH4 (C) 

CO2 
 

936.44-937.18 
 
-- 
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The exact frequency range or “micro-window” to be used for retrieving each gas and 

which interfering gases should be adjusted and which fixed were chosen to match those of earlier 

intercomparisons and varied only when local atmospheric conditions resulted in problems with 

the original micro-windows (such as saturation or excessive interference from water). The 

atmospheric continuum from water vapour, nitrogen and other gases is fitted as a single 

background parameter in all micro-windows.  Details of the chosen micro-windows are given in 

Table 1. 

 

5. Results 
 
 Once the referee had received all results from both groups, the derived vertical columns 

were released for both groups to see. The results were consistent with those seen in the open 

phase of the intercomparison: the level of agreement was generally a little worse than that seen 

in earlier intercomparison exercises (Goldman; Paton-Walsh et al. 1999: Griffith; Jones et al. 

2003: Meier; Paton-Walsh et al. 2005: Walsh; Bell et al. 1997), with the most significant 

differences seen in HF. Whilst many of the differences lie within the one sigma standard 

deviation of the daily measurements from each instrument, there is a clear bias, with NPL 

columns consistently lower than EC columns for all gases derived from the InSb detectors. The 

picture is less clear for gases derived from the MCT but in these cases the NPL columns tend to 

be higher than EC columns. Fits to the data appeared good with no obvious differences in the 

quality of the fits between instruments. Examples of fits for HF, HCl, HNO3 and CO2 from 

spectra taken on the EC instrument are given in figures 1a – 1d. 
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For column amounts derived from spectra recorded on InSb detectors the mean percentage 

differences found over the three days from the two different spectrometers was 6.7% for HF (at 

4039 cm-1); 2.7% for HCl (at 2926 cm-1); 3.8%; for CH4 (at 2904 cm-1); 2.9%; for CH4 (at 2835 

cm-1); 2.4% for N2O (at 2806 cm-1); 3.2% for N2O (at 2482 cm-1); 3.2% for O3 (at 2776 cm-1); 

3.8% for CO2 (at 2627 cm-1); and 2.8% for N2 (at 2419 cm-1) with the mean NPL column lower 

in all cases. 

For column amounts derived from spectra recorded on MCT detectors the mean percentage 

differences found over the three days from the two different spectrometers was 1.2% for CO2 (at 
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936 cm-1); 2.6% for HNO3 (at 873 cm-1) and 2.4% for HNO3 (at 868 cm-1) with the mean NPL 

column generally higher than the mean EC column. The results are presented in full in Table 2.  

 

6. Discussion of the Results 
 
The level of agreement between the two instruments is around 3% for nearly all of the gases. The 

results are similar for broad tropospheric absorbers such as CH4, N2O and CO2 and narrow 

stratospheric absorbers such as HCl and O3. The results are also similar for HNO3 and CO2 

measured on the MCT detectors.  The previous intercomparison results showed agreement 

between the NPL spectrometer and the spectrometer at Kiruna, Sweden of approximately 1% for 

all InSb species and 3% for MCT species (Meier; Paton-Walsh et al. 2005), with the MCT 

results improving to 1% after correction for detector non-linearity. Therefore these results are 

comparable for the MCT species HNO3 and CO2 but significantly worse for InSb species. In 

particular the derived HF column amounts are typically different by over 5%.  

 

Large differences in HF have been seen before(Griffith; Jones et al. 2003);  the magnitude and 

direction of this difference is similar to that observed between the NPL instrument and the 

instrument operated by the National Institute of Water and Atmospheric Research (NIWA) at 

Lauder, New Zealand. If we make the assumption that the performance of the NPL instrument is 

unaltered - despite having been dismantled, transported, reassembled and re-aligned in addition 

to having a new InSb detector - then we could infer that the spectrometers at Eureka and Lauder 

might agree whilst being ~ 5% different from the NPL and Kiruna spectrometers. 
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Table 2: For each micro-window analysed the mean vertical column amount of the trace gas derived from the 
spectra from each instrument is shown for each day, along with the percentage standard deviation of this vertical 
column amount. The percentage difference between the mean column amount derived from the NPL spectrometer 
and the mean column amount derived from the EC spectrometer is given in the last column. Finally the mean 
percentage difference for all three days is shown in bold to highlight biases in the results. 
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In the analyses described above an ideal ILS was assumed for both instruments. This was 

done so that the intercomparison would be directly comparable to other recent NDACC 

intercomparisons (Goldman; Paton-Walsh et al. 1999: Griffith; Jones et al. 2003: Meier; Paton-

Walsh et al. 2005).  A sensitivity test was performed by reanalysing the NPL spectra for HF 

column amounts with the true ILS as measured by the LINEFIT software included in the forward 

model.  The results were compared to the analysis that assumed an ideal ILS and it was found 

that the derived vertical column values changed by less than 1%. The estimates of the true ILS 

were very similar for the two instruments and so it was concluded that instrument line shape 

problems were not likely to be the main cause of the differences in columns derived from the two 

instruments. It should be noted that the HBr absorption features used to derive the ILS are 

around 2400cm-1 and that the ILS is known to vary with wavenumber {Griffith, 2003 #35}, so 

the measured ILS may not accurately reflect the true ILS at the HF absorption around 4038cm-1.  
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Figure 2 shows an example pair of HF lines from simultaneous spectra. Differences can be seen 

in both the x-axis (frequency in wavenumbers) and y-axis (arbitrary intensity). The spectral 

calibration (or frequency calibration) of the x-axis is done by reference to a temperature 

stabilized visible helium-neon laser that is input through the same optical path as the infrared 

source, is modulated by the interferometer and measured at the detector . The sampling of the 

interferogram is done at every zero crossing of the laser and the frequency of the laser is input 

into the instruments’ software to calibrate the frequency scale. Phase errors can cause a shift in 

frequency but the two instruments’ will also have a different frequency scale if the lasers 

stabilize at slightly different temperatures or if a different frequency value is entered into the 

software of each instrument. Since the analysis algorithm performs a multiplicative frequency 

shift to line up known absorptions with the lines in the HITRAN database this will not produce 

any significant difference between the column amounts derived from each instrument. 

The y-axis of each spectrum is intensity in arbitrary units. It depends upon the intensity 

envelope of the interferogram (the intensity of radiation reaching the detector at each frequency). 

The intensity envelope is determined as the moving mirror of the interferometer passes through 

the point where the fixed and moving mirrors are at an equal distance from the beam-splitter. 

This point is called zero path difference (ZPD) and is the point at which all frequencies of 

radiation will constructively interfere. The shape of the intensity envelope will depend upon the 

black-body emission from the sun, the optical characteristics of components of the spectrometer 

(eg beamsplitter, mirrors and optical filters) and the sensitivity of the detector to different 

frequencies of radiation.  

Absorption features from atmospheric gases reduce the intensity from the intensity envelope 

(the 100% level) at certain characteristic frequencies. The analysis of spectra involves 

determining the area of absorption features below this 100% level intensity. Since absorption 
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features are measured with respect to the 100% level the actual gain applied to the signal 

intensity coming from the detector is not important. What is of fundamental importance is the 

definition of the intensity envelope as the moving mirror passes through ZPD. If this is distorted 

then the whole spectrum may be shifted (in a way that can vary with frequency) producing errors 

in the zero and 100% levels. 

 

7. Comparison of zero and 100% levels   
 

Seven pairs of simultaneous spectra from each instrument were normalised and then the 

100% levels near the HF line and the peak transmission levels of the HF line were compared. 

The one hundred percent levels were similar in the two instruments’ spectra but the HF line was 

consistently and significantly deeper in the EC spectra (peak transmission of 0.466 ± 0.010) than 

in the NPL spectra (peak transmission of 0.494 ± 0.003). Taking the natural logarithms of the 

peak transmissions ([ln(0.494)]/[ln(0.466)] = 0.926) the expected difference in derived columns 

could be very approximately estimated to be -7.4%.   This calculation neglects the fact that the 

field of view of the two instruments is different (3mrads for NPL and 1.7mrads for EC), which 

would reduce the estimated discrepancy between the two instruments. (Using a larger field of 

view broadens the ILS and thus broadens the HF line and decreases its depth.)  This inspection 

confirmed that there are differences in the spectra recorded by the two instruments which are 

causing the differences in derived columns, rather than errors in the analysis procedure. The 

differences in peak transmission could be due to an error in the correct definition of the intensity 

envelope of the interferogram causing errors in the zero level (or 100% level) in either or both of 

the spectrometers.  
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The first spectrum recorded on the EC spectrometer on May 1st 1999 in the region used to derive 

HF column amounts is shown in Figure 3 alongside the spectrum recorded simultaneous on the 

NPL instrument. Both spectra have been normalised by dividing by the peak intensity value. 

Differences in the position of the zero level can clearly be seen. These two spectra were chosen 

as examples because the magnitudes of the zero-offsets are typical for spectra from each 

instrument. Figure 4 shows the same spectra expanded so that the zero level offsets can be seen 

more clearly. For better clarity only the EC zero levels for saturated features are marked. The EC 

spectrum displays significant variation in the zero level for different saturating features with 
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values as low as -2.4% and as high as +1.6%. A possible physical cause of this is clipping of the 

interferogram after zero path difference – possibly at the gain switching point. The NPL 

spectrum is more consistent but the zero level is also not perfect with values varying from zero 

to +0.2%.  

 

 

The zero-offsets for individual saturating features are not always consistent from one spectrum 

to the next. Regions of the spectrum that show positive offsets in some spectra may show 

negative offsets in others. Taking two saturating features (one either side of the HF feature) to 

illustrate the problem: the average zero-offset between 4031.3 and 4088.45 cm-1 is -0.68 ± 1.4 % 

for the EC instrument and 0.09 ± 0.23 % for the NPL instrument, whilst the average zero-offset 

between 4088.0 and 4088.3 cm-1 is -2.6 ± 1.3 % for the EC instrument and 0.23 ± 0.18 % for the 
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NPL instrument. The relatively small zero-offsets seen in the NPL spectra may be explained by 

the non ideal ILS, but the larger offsets in the EC spectra seem too large to be explained by the 

phase error alone. The example spectra shown in figure 3 have similar 100% levels from 4030 

cm-1 to 4038 cm-1, but they diverge from 4038 cm-1 to 4041 cm-1. This might possibly be caused 

by differences in the transmission and reflection properties of the optical components of the two 

instruments but is more likely to be the result of distortion of the intensity envelope of the 

interferogram, suggesting that some problem with the signal generation at ZPD is causing the 

zero level offsets and ultimately resulting in a bias in the retrieved column amounts. 

 

The spectral analysis code, SFIT 1.09e, allows the zero level to be fixed at an appropriate level 

for a given region of the spectrum. The difficulty in this case is determining what zero level 

should be assumed because of the large variations between adjacent saturated features. A 

sensitivity study was performed by reanalysing the EC spectra for HF column amounts with the 

zero level set to different values. It was found that a negative offset in the zero level resulted in a 

derived HF column that was lower by a factor approximately 1.4 times the magnitude of the 

offset. For example, an assumed offset of -3% produced an HF column that was 3*1.4 = 4.2% 

lower than the HF column derived when the zero level was fixed at zero. From this we may 

conclude that the problems with the zero levels may account for a significant portion of the 

differences between the spectrometers but on their own may not explain all of the differences. 

We recommend that when analysing spectra from the EC spectrometer the zero-level is fixed at 

an appropriate level for the region of interest in each individual spectrum. 

As a result of this work we have re-inspected the spectra recorded during the intercomparison 

at Lauder in the region used to derive HF. We found that the spectra recorded on the NIWA 

instrument also had imperfect definition of the zero level with negative offsets of about 2% at the 
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saturated feature around 4045 cm-1. This provides a possible explanation for a large portion of 

the differences observed during that earlier intercomparison. The NIWA instrument underwent a 

major re-alignment after the intercomparison and the spectra recorded after this had well defined 

zero levels. 

8. Conclusions 
 

An intercomparison of two ground-based Fourier transform infrared spectrometers at Eureka, 

Canada revealed typical differences of around 3% for most trace gases and differences in excess 

of 5% for HF.  These differences are much larger than the preceding NDACC intercomparison at 

Kiruna but not significantly larger than another earlier NDACC intercomparison (Griffith; Jones 

et al. 2003: Walsh; Bell et al. 1997). A likely cause for a substantial portion of the differences 

observed is the poor definition of the zero level in the spectra from the EC instrument. A 

possible physical cause of this is clipping of the interferogram after zero path difference – 

possibly at the gain switching point. The zero level offsets may be input into the retrieval code to 

make a partial correction for this effect, thereby improving the level of agreement between the 

instruments. Further reductions in the differences can be expected when the measured instrument 

line-shape is included in the model for the simulated spectrum used in the fitting algorithm. We 

conclude that instrumental differences contribute to the uncertainties in derived column amounts 

of trace gases in the atmosphere. Despite the larger differences seen in this intercomparison, 

these instrumental differences are comparable or smaller than the combined effects of the 

uncertainties in the assumed pressure and temperature profiles, the choice of spectral fitting 

region and the treatment of interfering gases.  
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Figure Captions 

Figure 1: Example of fits to spectral data taken on the EC Bomem DA8. The dotted line is the 

simulated fit to the measured data (solid line). Above each spectral interval the residual to the fit 

is shown (simulated – measured). Spectral windows illustrated are (a) Spectral window showing 

HF at 4039 cm-1(b) Spectral window showing HCl at 2926 cm-1 (c) Spectral window showing 

CH4 at 2904 cm-1 and (d) Spectral window showing CO2 at 936 cm-1 

 

Figure 2: Shown in black is the HF line from the first spectrum recorded on the EC spectrometer 

on May 1st 1999. Overlaid in grey is the spectrum recorded simultaneously on the NPL 

instrument. Both spectra have been normalised by dividing by the peak intensity value. 

 

Figure 3: Shown in black is a detail of the first spectrum recorded on the EC spectrometer on 

May 1st 1999 in the region used to derive HF column amounts. Overlaid in grey is the spectrum 

recorded simultaneously on the NPL instrument. Both spectra have been normalised by dividing 

by the peak intensity value. Differences in the definition of the zero level can clearly be seen.  

 

Figure 4: Shows the same spectra as Figure 3 expanded to show the zero level offsets more 

clearly. The EC spectrum is shown in black and the zero levels are given for all saturated 

features. The NPL spectrum is shown in grey for comparison. 
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