62 research outputs found

    Clinical impact of a new cardiac magnetic resonance imaging program: a single center US experience

    Get PDF
    While establishing a Cardiac Magnetic Resonance (CMR) program at an academic institution in the United States, we sought to evaluate indications and direct clinical impact of CMR on patient management and decision- making

    Left ventricular long axis function assessed during cine-cardiovascular magnetic resonance is an independent predictor of adverse cardiac events

    Get PDF
    Left ventricular pump function requires a complex interplay involving myocardial fibers orientated in the longitudinal, oblique and circumferential directions. Long axis dysfunction appears to be an early marker for a number of pathological states. We hypothesized that mitral annular plane systolic excursion (MAPSE) measured during cine-cardiovascular magnetic resonance (CMR) reflects changes in long axis function and may be an early marker for adverse cardiovascular outcomes. The aims of this study were therefore: 1) To assess the feasibility and reproducibility of MAPSE measurements during routine cine-CMR; and 2) To assess whether MAPSE, as a surrogate for long axis function, is a predictor of major adverse cardiovascular events (MACE)

    Correction: Impact of cardiovascular magnetic resonance on management and clinical decision-making in heart failure patients

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) can provide important diagnostic and prognostic information in patients with heart failure. However, in the current health care environment, use of a new imaging modality like CMR requires evidence for direct additive impact on clinical management. We sought to evaluate the impact of CMR on clinical management and diagnosis in patients with heart failure. Methods: We prospectively studied 150 consecutive patients with heart failure and an ejection fraction ≤50% referred for CMR. Definitions for “significant clinical impact” of CMR were pre-defined and collected directly from medical records and/or from patients. Categories of significant clinical impact included: new diagnosis, medication change, hospital admission/discharge, as well as performance or avoidance of invasive procedures (angiography, revascularization, device therapy or biopsy). Results: Overall, CMR had a significant clinical impact in 65% of patients. This included an entirely new diagnosis in 30% of cases and a change in management in 52%. CMR results directly led to angiography in 9% and to the performance of percutaneous coronary intervention in 7%. In a multivariable model that included clinical and imaging parameters, presence of late gadolinium enhancement (LGE) was the only independent predictor of “significant clinical impact” (OR 6.72, 95% CI 2.56-17.60, p=0.0001). Conclusions: CMR made a significant additive clinical impact on management, decision-making and diagnosis in 65% of heart failure patients. This additive impact was seen despite universal use of prior echocardiography in this patient group. The presence of LGE was the best independent predictor of significant clinical impact following CMR

    Cardiac MRI for Detection of Cardiac Sarcoidosis

    No full text
    non
    corecore