16 research outputs found

    Studies on the innervation of the embryonic chick hind limb

    Get PDF

    In vivo safety and efficacy testing of a thermally triggered injectable hydrogel scaffold for bone regeneration and augmentation in a rat model

    Get PDF
    Bone loss resulting from degenerative diseases and trauma is a significant clinical burden which is likely to grow exponentially with the aging population. In a number of conditions where pre-formed materials are clinically inappropriate an injectable bone forming hydrogel could be beneficial. The development of an injectable hydrogel to stimulate bone repair and regeneration would have broad clinical impact and economic benefit in a variety of orthopedic clinical applications. We have previously reported the development of a LaponiteÂź crosslinked pNIPAMco- DMAc (L-pNIPAM-co-DMAc) hydrogel delivery system, loaded with hydroxyapatite nanoparticles (HAPna), which was capable of inducing osteogenic differentiation of mesenchymal stem cells (MSCs) without the need for additional growth factors in vitro. However to enable progression towards clinical acceptability, biocompatibility and efficacy of the L-pNIPAM-co-DMAc hydrogel to induce bone repair in vivo must be determined. Biocompatibility was evaluated by subcutaneous implantation for 6 weeks in rats, and efficacy to augment bone repair was evaluated within a rat femur defect model for 4 weeks. No inflammatory reactions, organ toxicity or systemic toxicity were observed. In young male rats where hydrogel was injected, defect healing was less effective than sham operated controls when rat MSCs were incorporated. Enhanced bone healing was observed however, in aged exbreeder female rats where acellular hydrogel was injected, with increased deposition of collagen type I and Runx2. Integration of the hydrogel with surrounding bone was observed without the need for delivered MSCs; native cell infiltration was also seen and bone formation was observed within all hydrogel systems investigated. This hydrogel can be delivered directly into the target site, is biocompatible, promotes increased bone formation and facilitates migration of cells to promote integration with surrounding bone, for safe and efficacious bone repai

    Regulation of Adrenomedullin Secretion in Cultured Human Skin and Oral Keratinocytes

    Get PDF
    Adrenomedullin, a potent vasoactive peptide, is actively secreted from primary cultures of human oral and skin keratinocytes, but nothing is known of the regulation of its release. This study describes the effects of a range of substances on adrenomedullin production from cultures of oral and skin keratinocytes. We have established that keratinocytes do not store adrenomedullin but secrete it constitutively. Cytokines interleukin-1α and -1ÎČ, tumor necrosis factor-α and -ÎČ, and the bacterial product, lipopolysaccharide, significantly stimulate adrenomedullin secretion from oral but not skin keratinocytes. Both transforming growth factor-ÎČ1 and interferon-Îł are potent suppressors of adrenomedullin secretion from both cell types, as are forskolin, di-butyryl cyclic adenosine monophosphate, and adrenocorticotropin. The peptides thrombin and endothelin-1 increase adrenomedullin production, particularly from skin keratinocytes. These findings indicate that there are differences in the regulation of adrenomedullin production between oral and skin keratinocytes and that oral keratinocytes are particularly responsive to the action of inflammatory cytokines. This raises the possibility that adrenomedullin may serve a different functions in oral mucosa and skin

    Immunosurveillance profile of oral squamous cell carcinoma and oral epithelial dysplasia through dendritic and T-cell analysis

    No full text
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOOral squamous cell carcinomas (OSCCs) can arise from potentially malignant disorders, such as leukoplakia. The immune system plays an important role recognizing tumour precursor cells. However, due to immuno-editing mechanisms cancer cells are able to esc4610928933FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL E NÍVEL SUPERIORCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO2013/18321-8008317/2014-03305967/2014-
    corecore