28 research outputs found

    The Intermediate Filament Cytoskeleton of Macrophages

    Get PDF
    This study characterizes two-and three-dimensional ultrastructure and surface topography of polymerized networks of intermediate filaments (IF) isolated from mouse peritoneal macrophages. Isolated IF bound to monoclonal anti-IF antibodies in enzyme-linked immunosorbent assays. Immunogold labeling of IF with specific antibodies revealed that epitopes are distributed along filaments particularly at junctions where filaments interconnect. Networks of IF, viewed by scanning electron microscopy, organized as ropelike groups of interconnecting filaments which swirl and encircle each other to form three-dimensional lattices containing ellipsoidal-, circular-, and vacuole-shaped cavities. Cavity diameters were similar in size to organelles and vacuoles; diameters were grouped as small (12-288 nm), medium (0.3-1.7 μm), and large (2-3 μm). The walls of the cavities appeared as beaded structures with alternating globular and linear regions. Linear regions were 14 nm. Repeat distances taken from the central axis of globular regions were 23-27 nm. The lattice organization of IF observed in vitro was similar to images seen in vivo in Triton-insoluble cytoskeletons immunofluorescently labeled with specific antibodies. In whole cells processed for TEM, swirling bundles of IF were found encircling membranous vacuoles. Based on the lattice architecture of IF, cavity dimensions, and IF location, we postulate that intermediate filaments may function in the mechanical and spatial distribution of vacuoles in the cell cytoplasm

    Intestinal Epithelial Cell-Specific Deletion of PLD2 Alleviates DSS-Induced Colitis by Regulating Occludin

    Get PDF
    Ulcerative colitis is a multi-factorial disease involving a dysregulated immune response. Disruptions to the intestinal epithelial barrier and translocation of bacteria, resulting in inflammation, are common in colitis. The mechanisms underlying epithelial barrier dysfunction or regulation of tight junction proteins during disease progression of colitis have not been clearly elucidated. Increase in phospholipase D (PLD) activity is associated with disease severity in colitis animal models. However, the role of PLD2 in the maintenance of intestinal barrier integrity remains elusive. We have generated intestinal specific Pld2 knockout mice (Pld2 IEC-KO) to investigate the mechanism of intestinal epithelial PLD2 in colitis. We show that the knockout of Pld2 confers protection against dextran sodium sulphate (DSS)-induced colitis in mice. Treatment with DSS induced the expression of PLD2 and downregulated occludin in colon epithelial cells. PLD2 was shown to mediate phosphorylation of occludin and induce its proteasomal degradation in a c-Src kinase-dependent pathway. Additionally, we have shown that treatment with an inhibitor of PLD2 can rescue mice from DSS-induced colitis. To our knowledge, this is the first report showing that PLD2 is pivotal in the regulation of the integrity of epithelial tight junctions and occludin turn over, thereby implicating it in the pathogenesis of colitis

    A Novel Role for the Centrosomal Protein, Pericentrin, in Regulation of Insulin Secretory Vesicle Docking in Mouse Pancreatic β-cells

    Get PDF
    The centrosome is important for microtubule organization and cell cycle progression in animal cells. Recently, mutations in the centrosomal protein, pericentrin, have been linked to human microcephalic osteodysplastic primordial dwarfism (MOPD II), a rare genetic disease characterized by severe growth retardation and early onset of type 2 diabetes among other clinical manifestations. While the link between centrosomal and cell cycle defects may account for growth deficiencies, the mechanism linking pericentrin mutations with dysregulated glucose homeostasis and pre-pubertal onset of diabetes is unknown. In this report we observed abundant expression of pericentrin in quiescent pancreatic β-cells of normal animals which led us to hypothesize that pericentrin may have a critical function in β-cells distinct from its known role in regulating cell cycle progression. In addition to the typical centrosome localization, pericentrin was also enriched with secretory vesicles in the cytoplasm. Pericentrin overexpression in β-cells resulted in aggregation of insulin-containing secretory vesicles with cytoplasmic, but not centrosomal, pericentriolar material and an increase in total levels of intracellular insulin. RNAi- mediated silencing of pericentrin in secretory β-cells caused dysregulated secretory vesicle hypersecretion of insulin into the media. Together, these data suggest that pericentrin may regulate the intracellular distribution and secretion of insulin. Mice transplanted with pericentrin-depleted islets exhibited abnormal fasting hypoglycemia and inability to regulate blood glucose normally during a glucose challenge, which is consistent with our in vitro data. This previously unrecognized function for a centrosomal protein to mediate vesicle docking in secretory endocrine cells emphasizes the adaptability of these scaffolding proteins to regulate diverse cellular processes and identifies a novel target for modulating regulated protein secretion in disorders such as diabetes

    Protein kinase C activation disrupts epithelial apical junctions via ROCK-II dependent stimulation of actomyosin contractility

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Disruption of epithelial cell-cell adhesions represents an early and important stage in tumor metastasis. This process can be modeled <it>in vitro </it>by exposing cells to chemical tumor promoters, phorbol esters and octylindolactam-V (OI-V), known to activate protein kinase C (PKC). However, molecular events mediating PKC-dependent disruption of epithelial cell-cell contact remain poorly understood. In the present study we investigate mechanisms by which PKC activation induces disassembly of tight junctions (TJs) and adherens junctions (AJs) in a model pancreatic epithelium.</p> <p>Results</p> <p>Exposure of HPAF-II human pancreatic adenocarcinoma cell monolayers to either OI-V or 12-O-tetradecanoylphorbol-13-acetate caused rapid disruption and internalization of AJs and TJs. Activity of classical PKC isoenzymes was responsible for the loss of cell-cell contacts which was accompanied by cell rounding, phosphorylation and relocalization of the F-actin motor nonmuscle myosin (NM) II. The OI-V-induced disruption of AJs and TJs was prevented by either pharmacological inhibition of NM II with blebbistatin or by siRNA-mediated downregulation of NM IIA. Furthermore, AJ/TJ disassembly was attenuated by inhibition of Rho-associated kinase (ROCK) II, but was insensitive to blockage of MLCK, calmodulin, ERK1/2, caspases and RhoA GTPase.</p> <p>Conclusion</p> <p>Our data suggest that stimulation of PKC disrupts epithelial apical junctions via ROCK-II dependent activation of NM II, which increases contractility of perijunctional actin filaments. This mechanism is likely to be important for cancer cell dissociation and tumor metastasis.</p

    Temperature-Sensitive Random Insulin Granule Diffusion is a Prerequisite for Recruiting Granules for Release.

    No full text
    Glucose-evoked insulin secretion exhibits a biphasic time course and is associated with accelerated intracellular granule movement. We combined live confocal imaging of EGFP-labelled insulin granules with capacitance measurements of exocytosis in clonal INS-1 cells to explore the relation between distinct random and directed modes of insulin granule movement, as well as exocytotic capacity. Reducing the temperature from 34 °C to 24 °C caused a dramatic 81% drop in the frequency of directed events, but reduced directed velocities by a mere 25%. The much stronger temperature sensitivity of the frequency of directed events (estimated energy of activation ~ 135 kJ/mol) than that of the granule velocities (~ 22 kJ/mol) suggests that cooling-induced suppression of insulin granule movement is attributable to factors other than reduced motor protein adenosine 5'-triphosphatase activity. Indeed, cooling suppresses random granule diffusion by ~ 50%. In the single cell, the number of directed events depends on the extent of granule diffusion. Finally, single-cell exocytosis exhibits a biphasic pattern corresponding to that observed in vivo, and only the component reflecting 2nd phase insulin secretion is affected by cooling. We conclude that random diffusive movement is a prerequisite for directed insulin granule transport and for the recruitment of insulin granules released during 2nd phase insulin secretion

    MAPK interacts with occludin and mediates EGF-induced prevention of tight junction disruption by hydrogen peroxide

    No full text
    The MAPK (mitogen-activated protein kinase) pathway is a major intracellular signalling pathway involved in EGF (epithelial growth factor) receptor-mediated cell growth and differentiation. A novel function of MAPK activity in the mechanism of EGF-mediated protection of TJs (tight junctions) from H(2)O(2) was examined in Caco-2 cell monolayers. EGF-mediated prevention of H(2)O(2)-induced increase in paracellular permeability was associated with the prevention of H(2)O(2)-induced Tyr-phosphorylation, Thr-dephosphorylation and cellular redistribution of occludin and ZO-1 (zonula occludin-1). EGF also prevented H(2)O(2)-induced disruption of the actin cytoskeleton and the dissociation of occludin and ZO-1 from the actin-rich detergent-insoluble fractions. MEK (MAPK/ERK kinase, where ERK stands for extracellular signal related kinase) inhibitors, PD98059 and U0126, completely blocked these protective effects of EGF on TJs. EGF rapidly increased the levels of phosphorylated MEK (p-MEK) in detergent-soluble fractions and phosphorylated ERK (p-ERK) in detergent-insoluble fractions. p-ERK was colocalized and co-immunoprecipitated with occludin. GST (glutathione S-transferase) pull-down assay showed that the C-terminal tail of occludin binds to p-ERK in Caco-2 cell extracts. Pair-wise binding studies using recombinant proteins demonstrated that ERK1 directly interacts with the C-terminal tail of occludin. Therefore the present study shows that ERK interacts with the C-terminal region of occludin and mediates the prevention of H(2)O(2)-induced disruption of TJs by EGF
    corecore