85 research outputs found
A parametric study of the influence of ion and electron properties on the excitation of electromagnetic ion cyclotron waves in coronal mass ejections
Interplanetary coronal mass ejections (ICMEs) often possess a negative proton thermal anisotropy, Ap = T⊥,p/T ∥.p - 1 < 0 (T∥, T⊥: parallel and perpendicular temperatures, respectively) so that right-hand polarized electromagnetic ion cyclotron waves (EICWs) may be amplified by a kinetic instability [Famigia et ai, 1998a]. However, in view of the low proton beta of ICMEs, several physical parameters, besides Ap, need to be in the right range to excite this instability with significant growth rates. In this paper we present a parametric study of EICWs aimed at identifying those parameters which are most influential in fostering the emission of these waves in ICME scenarios. We analyze here the influence of: (1) thermal and suprathermal protons, (2) thermal alpha particles (αs), and (3) thermal electrons. We solve the dispersion relation of EICWs including protons, αs and electrons, all modeled with bi-Maxwellian distribution functions, and a minority population of suprathermal protons using a kappa function for the velocity component along the field. For physical regimes of ICMEs we find that the instability depends critically on the values of the following parameters: proton beta, proton thermal anisotropy, relative abundance of the suprathermal protons, α-to-proton relative abundance, α-to-proton temperature ratio, α particle thermal anisotropy, electron-to-proton temperature ratio, and thermal anisotropy of electrons. The effect of these parameters on the instability is either direct (when they increase the number of resonant particles) or indirect (when they decrease the phase speed of the wave so that more particles can resonate). Data surveys òn EICWs should take into account the whole set of parameters indicated here, since the expected level of wave excitation results from their combined action. The study may be useful in understanding the considerable level of magnetic fluctuations observed in interplanetary CMEs by the Wind spacecraft. Copyright 2003 by the American Geophysical Union.Fil:Dasso, S. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.Fil:Gratton, F.T. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina
Progressive transformation of a flux rope to an ICME
The solar wind conditions at one astronomical unit (AU) can be strongly
disturbed by the interplanetary coronal mass ejections (ICMEs). A subset,
called magnetic clouds (MCs), is formed by twisted flux ropes that transport an
important amount of magnetic flux and helicity which is released in CMEs. At 1
AU from the Sun, the magnetic structure of MCs is generally modeled neglecting
their expansion during the spacecraft crossing. However, in some cases, MCs
present a significant expansion. We present here an analysis of the huge and
significantly expanding MC observed by the Wind spacecraft during 9 and 10
November, 2004. After determining an approximated orientation for the flux rope
using the minimum variance method, we precise the orientation of the cloud axis
relating its front and rear magnetic discontinuities using a direct method.
This method takes into account the conservation of the azimuthal magnetic flux
between the in- and out-bound branches, and is valid for a finite impact
parameter (i.e., not necessarily a small distance between the spacecraft
trajectory and the cloud axis). Moreover, using the direct method, we find that
the ICME is formed by a flux rope (MC) followed by an extended coherent
magnetic region. These observations are interpreted considering the existence
of a previous larger flux rope, which partially reconnected with its
environment in the front. These findings imply that the ejected flux rope is
progressively peeled by reconnection and transformed to the observed ICME (with
a remnant flux rope in the front part).Comment: Solar Physics (in press
Behavioural aspects of smoking (both passive and active) and alcohol consumption on the risk of myocardial infarction
Objectives: To investigate the effect of alcohol consumption and of passive and active smoking on the risk of myocardial infarction (MI). Methods: Data on 429 cases with MI and 434 controls was obtained through an interviewer-led questionnaire as part of the Maltese Acute Myocardial Infarction (MAMI) Study. Regular alcohol drinkers were defined as subjects having at least one drink per week for one year and binge drinkers as having six or more drinks on one occasion this last year. Current smokers were excluded from the analysis of passive smoking. Odds ratios (AdjOR) were adjusted for age, gender, smoking/drinking alcohol, hypertension, diabetes, hypercholesterolaemia and BMI. Results: Regular alcohol drinkers were protected against MI [AdjOR 0.6 (95%CI 0.4-0.8)]. The risk of MI associated with binge drinking varies with the frequency, reaching an AdjOR of 5.8 (95%CI 1.2-27.1) in daily binge drinkers. The AdjOR for current smokers was 3.1 (95%CI 2.0-4.9) and for ex-smokers 1.6 (95%CI 1.1-2.4). Passive smoking also increased the risk of MI [AdjOR 3.0 (95%CI 1.7-5.4)]. Passive smoke exposure in a home setting had a greater deleterious effect [AdjOR 2.8 (95%CI 1.6-4.7)] than exposure in a public setting [AdjOR 1.4 (95%CI 0.9-2.2)]. While periods of 1 hour or longer of passive smoke exposure were found to be deleterious in both the investigated settings, exposure for less than 1 hour was only a risk factor in a home setting. Conclusion: The effect of alcohol consumption on the risk for MI varies from protective to extremely deleterious depending on the frequency of drinking. Daily binge drinking is associated with a high risk of MI. Smoking, even passive smoking, is a risk factor of MI. The effect of passive smoking on the risk of MI is greater in a home than in a public setting
Coronal mass ejections as expanding force-free structures
We mode Solar coronal mass ejections (CMEs) as expanding force-fee magnetic
structures and find the self-similar dynamics of configurations with spatially
constant \alpha, where {\bf J} =\alpha {\bf B}, in spherical and cylindrical
geometries, expanding spheromaks and expanding Lundquist fields
correspondingly. The field structures remain force-free, under the conventional
non-relativistic assumption that the dynamical effects of the inductive
electric fields can be neglected. While keeping the internal magnetic field
structure of the stationary solutions, expansion leads to complicated internal
velocities and rotation, induced by inductive electric field. The structures
depends only on overall radius R(t) and rate of expansion \dot{R}(t) measured
at a given moment, and thus are applicable to arbitrary expansion laws. In case
of cylindrical Lundquist fields, the flux conservation requires that both axial
and radial expansion proceed with equal rates. In accordance with observations,
the model predicts that the maximum magnetic field is reached before the
spacecraft reaches the geometric center of a CME.Comment: 19 pages, 9 Figures, accepted by Solar Physic
Sharp bounds on the critical stability radius for relativistic charged spheres
In a recent paper by Giuliani and Rothman \cite{GR}, the problem of finding a
lower bound on the radius of a charged sphere with mass M and charge Q<M is
addressed. Such a bound is referred to as the critical stability radius.
Equivalently, it can be formulated as the problem of finding an upper bound on
M for given radius and charge. This problem has resulted in a number of papers
in recent years but neither a transparent nor a general inequality similar to
the case without charge, i.e., M\leq 4R/9, has been found. In this paper we
derive the surprisingly transparent inequality
The
inequality is shown to hold for any solution which satisfies
where and are the radial- and tangential pressures respectively
and is the energy density. In addition we show that the inequality
is sharp, in particular we show that sharpness is attained by infinitely thin
shell solutions.Comment: 20 pages, 1 figur
Interplanetary and Geomagnetic Consequences of Interacting CMEs of 13-14 June 2012
We report on the kinematics of two interacting CMEs observed on 13 and 14
June 2012. Both CMEs originated from the same active region NOAA 11504. After
their launches which were separated by several hours, they were observed to
interact at a distance of 100 Rs from the Sun. The interaction led to a
moderate geomagnetic storm at the Earth with Dst index of approximately, -86
nT. The kinematics of the two CMEs is estimated using data from the Sun Earth
Connection Coronal and Heliospheric Investigation (SECCHI) onboard the Solar
Terrestrial Relations Observatory (STEREO). Assuming a head-on collision
scenario, we find that the collision is inelastic in nature. Further, the
signatures of their interaction are examined using the in situ observations
obtained by Wind and the Advance Composition Explorer (ACE) spacecraft. It is
also found that this interaction event led to the strongest sudden storm
commencement (SSC) (approximately 150 nT) of the present Solar Cycle 24. The
SSC was of long duration, approximately 20 hours. The role of interacting CMEs
in enhancing the geoeffectiveness is examined.Comment: 17 pages, 5 figures, Accepted in Solar Physics Journa
Heliospheric Observations of STEREO-Directed Coronal Mass Ejections in 2008--2010: Lessons for Future Observations of Earth-Directed CMEs
We present a study of coronal mass ejections (CMEs) which impacted one of the
STEREO spacecraft between January 2008 and early 2010. We focus our study on 20
CMEs which were observed remotely by the Heliospheric Imagers (HIs) onboard the
other STEREO spacecraft up to large heliocentric distances. We compare the
predictions of the Fixed-Phi and Harmonic Mean (HM) fitting methods, which only
differ by the assumed geometry of the CME. It is possible to use these
techniques to determine from remote-sensing observations the CME direction of
propagation, arrival time and final speed which are compared to in situ
measurements. We find evidence that for large viewing angles, the HM fitting
method predicts the CME direction better. However, this may be due to the fact
that only wide CMEs can be successfully observed when the CME propagates more
than 100 deg from the observing spacecraft. Overall eight CMEs, originating
from behind the limb as seen by one of the STEREO spacecraft can be tracked and
their arrival time at the other STEREO spacecraft can be successfully
predicted. This includes CMEs, such as the events on 4 December 2009 and 9
April 2010, which were viewed 130 deg away from their direction of propagation.
Therefore, we predict that some Earth-directed CMEs will be observed by the HIs
until early 2013, when the separation between Earth and one of the STEREO
spacecraft will be similar to the separation of the two STEREO spacecraft in
2009--2010.Comment: 21 pages, accepted to Solar Physic
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
- …