38 research outputs found

    Enhancing spatial detection accuracy for syndromic surveillance with street level incidence data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Department of Defense Military Health System operates a syndromic surveillance system that monitors medical records at more than 450 non-combat Military Treatment Facilities (MTF) worldwide. The Electronic Surveillance System for Early Notification of Community-based Epidemics (ESSENCE) uses both temporal and spatial algorithms to detect disease outbreaks. This study focuses on spatial detection and attempts to improve the effectiveness of the ESSENCE implementation of the spatial scan statistic by increasing the spatial resolution of incidence data from zip codes to street address level.</p> <p>Methods</p> <p>Influenza-Like Illness (ILI) was used as a test syndrome to develop methods to improve the spatial accuracy of detected alerts. Simulated incident clusters of various sizes were superimposed on real ILI incidents from the 2008/2009 influenza season. Clusters were detected using the spatial scan statistic and their displacement from simulated loci was measured. Detected cluster size distributions were also evaluated for compliance with simulated cluster sizes.</p> <p>Results</p> <p>Relative to the ESSENCE zip code based method, clusters detected using street level incidents were displaced on average 65% less for 2 and 5 mile radius clusters and 31% less for 10 mile radius clusters. Detected cluster size distributions for the street address method were quasi normal and sizes tended to slightly exceed simulated radii. ESSENCE methods yielded fragmented distributions and had high rates of zero radius and oversized clusters.</p> <p>Conclusions</p> <p>Spatial detection accuracy improved notably with regard to both location and size when incidents were geocoded to street addresses rather than zip code centroids. Since street address geocoding success rates were only 73.5%, zip codes were still used for more than one quarter of ILI cases. Thus, further advances in spatial detection accuracy are dependant on systematic improvements in the collection of individual address information.</p

    Predictors of 6-month mortality among nursing home residents: Diagnoses maybe more predictive than functional disability

    Get PDF
    Objective: Loss of daily living functions can be a marker for end of life and possible hospice eligibility. Unfortunately, data on patient\u27s functional abilities is not available in all settings. In this study we compare predictive accuracy of two indices designed to predict 6-month mortality among nursing home residents. One is based on traditional measures of functional deterioration and the other on patients\u27 diagnoses and demography. Methods: We created the Hospice ELigibility Prediction (HELP) Index by examining mortality of 140,699 Veterans Administration (VA) nursing home residents. For these nursing home residents, the available data on history of hospital admissions were divided into training (112,897 cases) and validation (27,832 cases) sets. The training data were used to estimate the parameters of the HELP Index based on (1) diagnoses, (2) age on admission, and (3) number of diagnoses at admission. The validation data were used to assess the accuracy of predictions of the HELP Index. The cross-validated accuracy of the HELP Index was compared with the Barthel Index (BI) of functional ability obtained from 296,052 VA nursing home residents. A receiver operating characteristic curve was used to examine sensitivity and specificity of the predicted odds of mortality. Results: The area under the curve (AUC) for the HELP Index was 0.838. This was significantly (α \u3c0.01) higher than the AUC for the BI of 0.692. Conclusions: For nursing home residents, comorbid diagnoses predict 6-month mortality more accurately than functional status. The HELP Index can be used to estimate 6-month mortality from hospital data and can guide prognostic discussions prior to and following nursing home admission

    The development and application of an oncology Therapy-Related Symptom Checklist for Adults (TRSC) and Children (TRSC-C) and e-health applications.

    Get PDF
    BACKGROUND: Studies found that treatment symptoms of concern to oncology/hematology patients were greatly under-identified in medical records. On average, 11.0 symptoms were reported of concern to patients compared to 1.5 symptoms identified in their medical records. A solution to this problem is use of an electronic symptom checklist that can be easily accessed by patients prior to clinical consultations. PURPOSE: Describe the oncology Therapy-Related Symptom Checklists for Adults (TRSC) and Children (TRSC-C), which are validated bases for e-Health symptom documentation and management. The TRSC has 25 items/symptoms; the TRSC-C has 30 items/symptoms. These items capture up to 80% of the variance of patient symptoms. Measurement properties and applications with outpatients are presented. E-Health applications are indicated. METHODS: The TRSC was developed for adults (N = 282) then modified for children (N = 385). Statistical analyses have been done using correlational, epidemiologic, and qualitative methods. Extensive validation of measurement properties has been reported. RESULTS: Research has found high levels of patient/clinician satisfaction, no increase in clinic costs, and strong correlations of TRSC/TRSC-C with medical outcomes. A recently published sequential cohort trial with adult outpatients at a Mayo Clinic community cancer center found TRSC use produced a 7.2% higher patient quality of life, 116% more symptoms identified/managed, and higher functional status. DISCUSSION, IMPLICATIONS, AND FOLLOW-UP: An electronic system has been built to collect TRSC symptoms, reassure patients, and enhance patient-clinician communications. This report discusses system design and efforts made to provide an electronic system comfortable to patients. Methods used by clinicians to promote comfort and patient engagement were examined and incorporated into system design. These methods included (a) conversational data collection as opposed to survey style or standardized questionnaires, (b) short response phrases indicating understanding of the reported symptom, (c) use of open-ended questions to reduce long lists of symptoms, (d) directed questions that ask for confirmation of expected symptoms, (e) review of symptoms at designated stages, and (d) alerting patients when the computer has informed clinicians about patient-reported symptoms. CONCLUSIONS: An e-Health symptom checklist (TRSC/TRSC-C) can facilitate identification, monitoring, and management of symptoms; enhance patient-clinician communications; and contribute to improved patient outcomes

    Therapeutic emails

    Get PDF
    BACKGROUND: In this paper, we show how counselors and psychologists can use emails for online management of substance abusers, including the anatomy and content of emails that clinicians should send substance abusers. Some investigators have attempted to determine if providing mental health services online is an efficacious delivery of treatment. The question of efficacy is an empirical issue that cannot be settled unless we are explicitly clear about the content and nature of online treatment. We believe that it is not the communications via internet that matters, but the content of these communications. The purpose of this paper is to provide the content of our online counseling services so others can duplicate the work and investigate its efficacy. RESULTS: We have managed nearly 300 clients online for recovery from substance abuse. Treatment included individual counseling (motivational interviewing, cognitive-behavior therapy, relapse prevention assignments), participation in an electronic support group and the development of a recovery team. Our findings of success with these interventions are reported elsewhere. Our experience has led to development of a protocol of care that is described more fully in this paper. This protocol is based on stages of change and relapse prevention theories and follows a Motivational Interviewing method of counseling. CONCLUSION: The use of electronic media in providing mental health treatment remains controversial due to concerns about confidentiality, security and legal considerations. More research is needed to validate and generalize the use of online treatment for mental health problems. If researchers have to build on each others work, it is paramount that we share our protocols of care, as we have done in this paper

    The development and application of an oncology Therapy-Related Symptom Checklist for Adults (TRSC) and Children (TRSC-C) and e-health applications

    Get PDF
    BACKGROUND: Studies found that treatment symptoms of concern to oncology/hematology patients were greatly under-identified in medical records. On average, 11.0 symptoms were reported of concern to patients compared to 1.5 symptoms identified in their medical records. A solution to this problem is use of an electronic symptom checklist that can be easily accessed by patients prior to clinical consultations. PURPOSE: Describe the oncology Therapy-Related Symptom Checklists for Adults (TRSC) and Children (TRSC-C), which are validated bases for e-Health symptom documentation and management. The TRSC has 25 items/symptoms; the TRSC-C has 30 items/symptoms. These items capture up to 80% of the variance of patient symptoms. Measurement properties and applications with outpatients are presented. E-Health applications are indicated. METHODS: The TRSC was developed for adults (N = 282) then modified for children (N = 385). Statistical analyses have been done using correlational, epidemiologic, and qualitative methods. Extensive validation of measurement properties has been reported. RESULTS: Research has found high levels of patient/clinician satisfaction, no increase in clinic costs, and strong correlations of TRSC/TRSC-C with medical outcomes. A recently published sequential cohort trial with adult outpatients at a Mayo Clinic community cancer center found TRSC use produced a 7.2% higher patient quality of life, 116% more symptoms identified/managed, and higher functional status. DISCUSSION, IMPLICATIONS, AND FOLLOW-UP: An electronic system has been built to collect TRSC symptoms, reassure patients, and enhance patient-clinician communications. This report discusses system design and efforts made to provide an electronic system comfortable to patients. Methods used by clinicians to promote comfort and patient engagement were examined and incorporated into system design. These methods included (a) conversational data collection as opposed to survey style or standardized questionnaires, (b) short response phrases indicating understanding of the reported symptom, (c) use of open-ended questions to reduce long lists of symptoms, (d) directed questions that ask for confirmation of expected symptoms, (e) review of symptoms at designated stages, and (d) alerting patients when the computer has informed clinicians about patient-reported symptoms. CONCLUSIONS: An e-Health symptom checklist (TRSC/TRSC-C) can facilitate identification, monitoring, and management of symptoms; enhance patient-clinician communications; and contribute to improved patient outcomes

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    BackgroundDisorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021.MethodsWe estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined.FindingsGlobally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer.InterpretationAs the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
    corecore